|
RAYLEIGH L. On waves propagated along the plane surface of an elastic solid[J].Proceedings of the London Mathematical Society,1885,1(1): 4-11.
|
|
[2]KIM G, IN C W, KIM J Y, et al. Air-coupled detection of nonlinear Rayleigh surface waves in concrete: application to microcracking detection[J].NDT & E International,2014,67: 64-70.
|
|
[3]VOIGT W. Theoritical studies on the elasticity relationships of cristals[J].R Soc Sci,1887,34: 3-51.
|
|
[4]COSSERAT E, COSSERAT F.Theory of Deformable Bodies[M]. Paris: Scientific Library A. Hermann and Sons, 1909.
|
|
[5]TOUPIN R A. Elastic materials with couple-stresses[J].Archive for Rational Mechanics and Analysis,1962,11(1): 385-414.
|
|
[6]TOUPIN R A. Theory of elasticity with couple-stress[J].Arch Rat Mech Anal,1964,17: 85-11.
|
|
[7]KOITER W T. Couple stresses in the theory of elasticity Ⅰ & Ⅱ[J].Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen,1964,67: 17-44.
|
|
[8]MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J].Archive for Rational Mechanics and Analysis,1962,11(1): 415-448.
|
|
[9]YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J].International Journal of Solids and Structures,2002,39(10): 2731-2743.
|
|
[10]ZHENG P, LI G, SUN P, et al. Couple-stress-based gradient theory of poroelasticity[J].Mathematics and Mechanics of Solids,2024,29(1): 173-190.
|
|
[11]BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅰ: low-frequency range[J].The Journal of the Acoustical Society of America,1956,28(2): 168-178.
|
|
[12]BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅱ: higher frequency range[J].The Journal of the Acoustical Society of America,1956,28(2): 179-191.
|
|
[13]DING H, TONG L H, XU C, et al. On propagation characteristics of Rayleigh wave in saturated porous media based on the strain gradient nonlocal Biot theory[J].Computers and Geotechnics, 2022,141: 104522.
|
|
[14]HIRAI H. Analysis of Rayleigh waves in saturated porous elastic media by finite element method[J].Soil Dynamics and Earthquake Engineering,1992,11(6): 311-326.
|
|
[15]LIU H, ZHOU F, WANG L, et al. Propagation of Rayleigh waves in unsaturated porothermoelastic media[J].International Journal for Numerical and Analytical Methods in Geomechanics,2020,44(12): 1656-1675.
|
|
[16]TONG L H, LAI S K, ZENG L L, et al. Nonlocal scale effect on Rayleigh wave propagation in porous fluid-saturated materials[J].International Journal of Mechanical Sciences,2018,148: 459-466.
|
|
[17]SU C, GUAN W, YIN Y, et al. Elastic waves in fluid-saturated porous materials with a couple-stress solid phase[J].Journal of Sound and Vibration,2024,569: 117993.
|
|
[18]MNCH I, NEFF P, MADEO A, et al. The modified indeterminate couple stress model: why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless[J].ZAMM-Journal of Applied Mathematics and Mechanics,2017,97(12): 1524-1554.
|
|
[19]HADJESFANDIARI A R, DARGUSH G F. Couple stress theory for solids[J].International Journal of Solids and Structures,2011,48(18): 2496-2510.
|
|
[20]HADJESFANDIARI A R. On the skew-symmetric character of the couple-stress tensor[J/OL].ArXiv: General Physics, 2013[2024-10-25].https://api.semanticscholar.org/CorpusID:116973411.
|
|
[21]AKI K, RICHARDS P G.Quantitative Seismology[M]. 2nd ed. University Science Books,2002.
|
|
[22]ZHENG P, DING B. Potential method for 3D wave propagation in a poroelastic medium and its applications to Lamb’s problem for a poroelastic half-space[J].International Journal of Geomechanics,2016,16(2): 04015048.
|
|
[23]CHENG A H D.Poroelasticity[M]. Switzerland: Springer International Publishing, 2016.
|
|
[24]MAVKO G, MUKERJI T, DVORKIN J.The Rock Physics Handbook[M]. 2nd ed. Cambridge: Cambridge University Press, 2009.
|