• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多智能体系统动态事件触发固定时间二分一致

周礼庆 赵华荣 彭力

周礼庆, 赵华荣, 彭力. 多智能体系统动态事件触发固定时间二分一致[J]. 应用数学和力学, 2025, 46(11): 1440-1451. doi: 10.21656/1000-0887.450269
引用本文: 周礼庆, 赵华荣, 彭力. 多智能体系统动态事件触发固定时间二分一致[J]. 应用数学和力学, 2025, 46(11): 1440-1451. doi: 10.21656/1000-0887.450269
ZHOU Liqing, ZHAO Huarong, PENG Li. Fixed-Time Bipartite Consensus of Multi-Agent Systems With the Dynamic Event-Triggered Scheme[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1440-1451. doi: 10.21656/1000-0887.450269
Citation: ZHOU Liqing, ZHAO Huarong, PENG Li. Fixed-Time Bipartite Consensus of Multi-Agent Systems With the Dynamic Event-Triggered Scheme[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1440-1451. doi: 10.21656/1000-0887.450269

多智能体系统动态事件触发固定时间二分一致

doi: 10.21656/1000-0887.450269
基金项目: 

中央高校基本科研业务费(JUSRP123061)

国家自然科学基金(62403216;61873112)

详细信息
    作者简介:

    周礼庆(1994—),男,硕士(E-mail:17864231206@163.com);赵华荣(1991—),男,讲师,博士(通讯作者. E-mail: hrzhao@jiangnan.edu.cn);彭力(1967—),男,教授,博士,博士生导师(E-mail: penglimail2002@163.com).

    通讯作者:

    赵华荣(1991—),男,讲师,博士(通讯作者. E-mail: hrzhao@jiangnan.edu.cn)

  • 中图分类号: TP13|O231

Fixed-Time Bipartite Consensus of Multi-Agent Systems With the Dynamic Event-Triggered Scheme

Funds: 

The National Science Foundation of China(62403216;61873112)

  • 摘要: 针对多智能体系统的通讯受限问题,研究了一种基于采样数据的固定时间动态事件触发二分一致性算法.首先,设计了一种周期采样机制,以降低系统的通讯频率.针对采样数据设计了一种基于辅助变量的动态事件触发控制算法,以进一步减小系统触发次数.其次,为提高动态事件触发控制算法的收敛速度,研究了一种动态事件触发固定时间二分一致控制算法.最后,利用Lyapunov稳定性理论、代数图论以及相关不等式,对所提控制协议稳定性进行了严格的理论证明,并通过仿真实验验证了算法的有效性.
  • [2]SONG Z, WANG X, WEI B, et al. Distributed finite-time cooperative economic dispatch strategy for smart grid under DOS attack[J].Mathematics,2023,11(9): 2103.
    XIE X, SHENG T, CHEN X. Self-triggered formation control for multi-spacecraft attitude coordination with communication delays[J].Journal of the Franklin Institute,2023,360(18): 14696-14711.
    [3]WANG J, LUO X, LI M, et al. Distributed nonsingular terminal sliding mode control-based RBFNN for heterogeneous vehicular platoons with input saturation[J].Transactions of the Institute of Measurement and Control,2024,46(9): 1742-1754.
    [4]OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Transactions on Automatic Control,2004,49(9): 1520-1533.
    [5]王兴平, 宋艳荣, 程兆林. 切换网络下时变线性多智能体系统的指数同步[J]. 自动化学报, 2015,41(8): 1528-1532. (WANG Xingping, SONG Yanrong, CHENG Zhaolin. Exponential synchronization of time-varying linear multi-agent systems with switching topology[J].Acta Automatica Sinica,2015,41(8): 1528-1532. (in Chinese))
    [6]LI G, WANG X, LI S. Finite-time consensus algorithms of leader-follower higher-order multi-agent systems with uncertain nonlinearities[J].Journal of the Franklin Institute,2020,357(16): 11939-11952.
    [7]刘凡, 杨洪勇, 杨怡泽, 等. 带有不匹配干扰的多智能体系统有限时间积分滑模控制[J]. 自动化学报, 2019,45(4): 749-758. (LIU Fan, YANG Hongyong, YANG Yize, et al. Finite-time integral sliding-mode control for multi-agent systems with mismatched disturbances[J].Acta Automatica Sinica,2019,45(4): 749-758. (in Chinese))
    [8]ZUO Z, HAN Q L, NING B, et al. An overview of recent advances in fixed-time cooperative control of multiagent systems[J].IEEE Transactions on Industrial Informatics,2018,14(6): 2322-2334.
    [9]NING B, HAN Q L, ZUO Z, et al. Fixed-time and prescribed-time consensus control of multiagent systems and its applications:a survey of recent trends and methodologies[J].IEEE Transactions on Industrial Informatics,2023,19(2): 1121-1135.
    [10]赵玮, 任凤丽. 基于牵制控制的多智能体系统的有限时间与固定时间一致性[J]. 应用数学和力学, 2021,42(3): 299-307. (ZHAO Wei, REN Fengli. Finite-time and fixed-time consensus for multi-agent systems via pinning control[J].Applied Mathematics and Mechanics,2021,42(3): 299-307. (in Chinese))
    [11]陈世明, 黎力超. 非线性随机多智能体系统的固定时间一致性[J]. 控制理论与应用, 2021,38(4): 540-546. (CHEN Shiming, LI Lichao. Fixed-time consensus of nonlinear stochastic multi-agent systems[J].Control Theory and Applications,2021,38(4): 540-546. (in Chinese))
    [12]ALTAFINI C. Consensus problems on networks with antagonistic interactions[J].IEEE Transactions on Automatic Control,2013,58(4): 935-946.
    [13]XU Z, LIU X, CAO J, et al. Fixed-time bipartite consensus of nonlinear multi-agent systems under directed signed graphs with disturbances[J].Journal of the Franklin Institute,2022,359(6): 2693-2709.
    [14]纪良浩, 李海, 李华青. 虚假数据注入攻击下多智能体系统的均方二分一致性研究[J]. 控制与决策, 2023,38(12): 3363-3371. (JI Lianghao, LI Hai, LI Huaqing. Mean square bipartite consensus for multi-agent systems under false data injection attacks[J].Control and Decision,2023,38(12): 3363-3371. (in Chinese))
    [15]XIONG L, CHEN K, CAO J, et al. A novel adaptive event-triggered security consensus control mechanism for leader-following multi-agent systems under hybrid random cyber attacks[J].International Journal of Robust and Nonlinear Control,2024,34(15): 10571-10588.
    [16]ZHAO H, SHAN J, PENG L, et al. Adaptive event-triggered bipartite formation for multiagent systems via reinforcement learning[J].IEEE Transactions on Neural Networks and Learning Systems,2024,35(12): 17817-17828.
    [17]李振涛, 冯元珍, 王正新. 事件触发下多智能体系统固定时间二分一致性[J]. 计算机工程与应用, 2021,57(21): 80-86. (LI Zhengtao, FENG Yuanzhen, WANG Zhengxin. Fixed-time bipartite consensus of multi-agent systems via event-triggered control[J].Computer Engineering and Applications,2021,57(21): 80-86.〖STHZ〗 (in Chinese))
    [18]JIANG A H, ZHAN X S, HAN T, et al. Bipartite fixed-time consensus of multi-agents system with disturbancevia event-triggered control[J].International Journal of Control,Automation and Systems,2022,20(7): 2249-2259.
    [19]赵华荣, 彭力, 吴治海, 等. 随机时延下多输入多输出多智能体系统事件触发双向编队[J]. 控制与决策, 2024,39(4): 1251-1259. (ZHAO Huarong, PENG Li, WU Zhihai, et al. Event-triggered bipartite formation for multi-input multi-output multiagent systems with random delays[J].Control and Decision,2024,39(4): 1251-1259. (in Chinese))
    [20]LIU J, RAN G, WU Y, et al. Dynamic event-triggered practical fixed-time consensus for nonlinear multiagent systems[J].IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2022,69(4): 2156-2160.
    [21]DU X, QU S, ZHANG H, et al. Distributed bipartite consensus for multi-agent systems with dynamic event-triggered mechanism[J]. Journal of the Franklin Institute,2023,360(12): 8877-8897.
    [22]LIU H, WANG Z. Sampled-data-based consensus of multi-agent systems under asynchronous denial-of-service attacks[J].Nonlinear Analysis:Hybrid Systems,2021,39: 100969.
    [23]郑丽颖, 杨永清, 许先云. 基于时变拓扑结构的二阶多智能体系统采样一致性[J]. 应用数学和力学, 2022,43(7): 783-791. (ZHENG Liying, YANG Yongqing, XU Xianyun. Sampling consensus of 2nd-order multi-agent systems based on time-varying topology[J].Applied Mathematics and Mechanics,2022,43(7): 783-791. (in Chinese))
    [24]PENG C, ZHANG J, HAN Q. Consensus of multiagent systems with nonlinear dynamics using an integrated sampled-data-based event-triggered communication scheme[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems,2019,49(3): 589-599.
    [25]YAO Y, LUO Y, CAO J. Finite-time guarantee-costH∞ consensus control of second-order multi-agent systems based on sampled-data event-triggered mechanisms[J].Neural Networks,2024,174: 106261.
    [26]YIN K, YANG D. Sampled-data-based dynamic event-triggered asynchronous control of continuous-time positive Markov jump systems[J].Chaos, Solitons & Fractals,2023,169: 113254.
    [27]PARSEGOV E, POLYAKOV E, SHCHERBAKOV S. Nonlinear fixed-time control protocol for uniform allocation of agents on a segment[J].Doklady Mathematics,2013,87(1): 133-136.
    [28]CHEN X, YU H, HAO F. Prescribed-time event-triggered bipartite consensus of multiagent systems[J].IEEE Transactions on Cybernetics,2020,52(4): 2589-2598.
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-02-07
  • 网络出版日期:  2025-12-05

目录

    /

    返回文章
    返回