留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道中流体弹性对颗粒聚集的影响

赵可馨 王企鲲 柯灵杰

赵可馨, 王企鲲, 柯灵杰. 微通道中流体弹性对颗粒聚集的影响[J]. 应用数学和力学, 2025, 46(10): 1256-1266. doi: 10.21656/1000-0887.450275
引用本文: 赵可馨, 王企鲲, 柯灵杰. 微通道中流体弹性对颗粒聚集的影响[J]. 应用数学和力学, 2025, 46(10): 1256-1266. doi: 10.21656/1000-0887.450275
ZHAO Kexin, WANG Qikun, KE Lingjie. The Influence Effect of Fluid Elasticity on Particle Aggregation in Microchannels[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1256-1266. doi: 10.21656/1000-0887.450275
Citation: ZHAO Kexin, WANG Qikun, KE Lingjie. The Influence Effect of Fluid Elasticity on Particle Aggregation in Microchannels[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1256-1266. doi: 10.21656/1000-0887.450275

微通道中流体弹性对颗粒聚集的影响

doi: 10.21656/1000-0887.450275
基金项目: 

国家自然科学基金(52576166)

详细信息
    作者简介:

    赵可馨(2000— ),女,硕士生(E-mail: 2556469008@qq.com);王企鲲(1978— ),男,副教授,博士(通讯作者. E-mail: wangqk@usst.edu.cn).

    通讯作者:

    王企鲲(1978— ),男,副教授,博士(通讯作者. E-mail: wangqk@usst.edu.cn).

  • 中图分类号: O359

The Influence Effect of Fluid Elasticity on Particle Aggregation in Microchannels

Funds: 

The National Science Foundation of China(52576166)

  • 摘要: 采用“相对运动模型”对黏弹性流体中颗粒聚集现象进行数值模拟,使用OldroydB流体来描述黏弹本构关系,并用对数构象张量法稳定数值模拟,探究黏弹性流体的弹性差异对颗粒聚集特性因素的影响.研究结果表明:黏弹性流体中Wi数升高和β值降低均能使通道内流体弹性增强,颗粒径向位置受力发生明显波动;决定颗粒径向分布的本质是惯性力的分布,弹性升力波动也会造成惯性升力的波动,惯性与弹性非线性共存;高Wi数,低β值使颗粒所受升力指向管道中心的范围逐渐增大,使颗粒由管道壁面聚集转而向中心聚集.此外,强弹性流体会使颗粒受力方向始终指向管道中心.
  • [2]D’AVINO G, ROMEO G, VILLONE M M, et al. Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser[J].Lab on a Chip,2012,12(9): 1638-1645.
    D’AVINO G, MAFFETTONE P L. Particle dynamics in viscoelastic liquids[J].Journal of Non-Newtonian Fluid Mechanics,2015,215: 80-104.
    [3]SALAS-BARZOLA X, MATREJEAN G, DE LOUBENS C, et al.Reversal of particle Migration for viscoelastic solution at high solvent viscosity[J]. Journal of Non-Newtonian Fluid Mechanics,2024,329: 105234.
    [4]GOSSETT D R, WEAVER W M, MACH A J, et al. Label-free cell separation and sorting in microfluidic systems[J].Analytical and Bioanalytical Chemistry,2010,397(8): 3249-3267.
    [5]SETHU P, SIN A, TONER M. Microfluidic diffusive filter for apheresis (leukapheresis)[J].Lab on a Chip,2006,6(1): 83-89.
    [6]崔静, 岳茂昌, 牛书鑫, 等. 水滴撞击倾斜非Newton除冰液液膜动力学行为特性数值研究[J]. 应用数学和力学, 2024,45(3): 337-347.(CUI Jing, YUE Maochang, NIU Shunxin, et al. Numerical study on dynamic behavior characteristics of water droplets hitting inclined non-Newtonian deicing liquid films[J]. Applied Mathematics and Mechanics,2024,45(3): 337-347.(in Chinese))
    [7]YUAN D, ZHAO Q, YAN S, et al. Recent progress of particle migration in viscoelastic fluids[J].Lab on a Chip,2018,18(4): 551-567.
    [8]张仕环, 庞明军, 郑智颖. 低Weissenberg数黏弹性流体中单气泡上浮运动特性研究[J]. 应用数学和力学, 2023, 44(06): 629-642.(ZHANG Shihuan, PANG Mingjun, ZHENG Zhiying. Study on hydrodynamics characteristics of a single bubble in viscoelastic fluid at low weissenberg numbers[J]. Applied Mathematics and Mechanics,2023,44(6): 629-642. (in Chinese))
    [9]PACEK A. Bubbles, drops and particles in non-Newtonian fluids, R.P. Chhabra, 2nd ed., Taylor & francis group (2007), 770 pp., ISBN-10: 0-8247-7329-5[J]. Chemical Engineering Research and Design,2008,86(5): 535-536.
    [10]HUANG P Y, JOSEPH D D. Effects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluids[J].Journal of Non-Newtonian Fluid Mechanics,2000,90(2/3): 159-185.
    [11]KARIMI A, YAZDI S, ARDEKANI A M. Hydrodynamic mechanisms of cell and particle trapping in microfluidics[J].Biomicrofluidics,2013,7(2): 21501.
    [12]FENG J, HUANG P Y, JOSEPH D D. Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid[J].Journal of Non-Newtonian Fluid Mechanics,1996,63(1): 63-88.
    [13]LIU B R, LIN J Z, KU X K, et al. Migration of spherical particles in a confined shear flow of Giesekus fluid[J]. Rheologica Acta,2019,58: 639-646.
    [14]SEO K W, KANG Y J, LEE S J. Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids[J].Physics of Fluids,2014,26(6): 063301.
    [15]HWANG W R, HULSEN M A, MEIJER H E H. Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames[J].Journal of Non-Newtonian Fluid Mechanics,2004,121(1): 15-33.
    [16]XIONG Y L, PENG S, YANG D, et al. Influence of polymer additive on flow past a hydrofoil: a numerical study[J].Physics of Fluids,2018,30(1): 013104.
    [17]PENG S, LI J Y, XIONG Y L, et al. Numerical simulation of two-dimensional unsteady Giesekus flow over a circular cylinder[J].Journal of Non-Newtonian Fluid Mechanics,2021,294: 104571.
    [18]王企鲲, 王浩. 微通道中弹性颗粒所受惯性升力特性的数值研究[J]. 机械工程学报, 2015,51(14): 160-166.(WANG Qikun, WANG Hao. Behavior for inertial lift on elastic particles in micro-channel[J]. Journal of Mechanical Engineering,2015,51(14): 160-166. (in Chinese))
    [19]沈洋, 王企鲲, 刘唐京. 剪切稀化流变特性对微通道中颗粒迁移的影响[J]. 应用数学和力学, 2024,45(5): 637-650.(SHEN Yang, WANG Qikun, LIU Tangjing. Effect of shear thinning rheological properties on particle migration in microchannels[J]. Applied Mathematics and Mechanics,2024,45(5): 637-650.(in Chinese))
    [20]D’AVINO G, HULSEN M A, GRECO F, et al. Numerical simulations on the dynamics of a spheroid in a viscoelastic liquid in a wide-slit microchannel[J].Journal of Non-Newtonian Fluid Mechanics,2019,263: 33-41.
    [21]NGUYEN-HOANG H, PHAN-THIEN N, KHOO B C, et al. Completed double layer boundary element method for periodic fibre suspension in viscoelastic fluid[J].Chemical Engineering Science,2008,63(15): 3898-3908.
    [22]蔡伟华, 李小斌, 张红娜, 等. 黏弹性流体动力学[M]. 北京: 科学出版社, 2016: 69.(CAI Weihua, LI Xiaobin, ZHANG Hongna, et al.Viscoelastic Fluid Dynamics[M]. Beijing: Science Press, 2016: 69.(in Chinese))
    [23]SURESHKUMAR R, BERIS A N. Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows[J].Journal of Non-Newtonian Fluid Mechanics,1995,60(1): 53-80.
    [24]FATTAL R, KUPFERMAN R. Constitutive laws for the matrix-logarithm of the conformation tensor[J].Journal of Non-Newtonian Fluid Mechanics,2004,123(2/3): 281-285.
    [25]ALVES M A, OLIVEIRA P J, PINHO F T. A convergent and universally bounded interpolation scheme for the treatment of advection[J].International Journal for Numerical Methods in Fluids,2003,41(1): 47-75.
    [26]PIMENTA F. RheoTool[EB/OL]. (2022-07-02)[2024-10-16]. https://github.com/fppimenta/rheoTool.
  • 加载中
计量
  • 文章访问数:  29
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-17
  • 修回日期:  2025-02-17
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回