[2]许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术[J]. 力学学报, 2016,48(3): 654-659.(XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates[J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(3): 654-659. (in Chinese))
|
张龙辉, 张晓晴, 姚小虎, 等. 高应变率下航空透明聚氨酯的动态本构模型[J]. 爆炸与冲击, 2015,35(1): 51-56.(ZHANG Longhui, ZHANG Xiaoqing, YAO Xiaohu, et al. Constitutive model of transparent aviation polyurethane at high strain rates[J].Explosion and Shock Waves,2015,35(1): 51-56. (in Chinese))
|
[3]张方举, 何鹏, 胡文军, 等. 软材料的低阻抗SHPB实验技术与应用[J]. 中国测试, 2012,38(2): 17-20.(ZHANG Fangju, HE Peng, HU Wenjun, et al. Application and experimental technique of low impedance SHPB for soft materials[J].China Measurement & Test,2012,38(2): 17-20. (in Chinese))
|
[4]章超, 徐松林, 王鹏飞. 基于数字图像相关方法对冲击载荷下泡沫铝全场变形过程的测试[J]. 实验力学, 2013,28(5): 629-634.(ZHANG Chao, XU Songlin, WANG Pengfei. Test of aluminum foam deforming process under impact load based on digital image correlation method[J].Journal of Experimental Mechanics,2013,28(5): 629-634. (in Chinese))
|
[5]HOU B, WANG Y, TANG Z B, et al. The mechanical behaviors of corrugated sandwich panel under quasi-static and dynamic shear-compressive loadings[J].International Journal of Impact Engineering,2021,156: 103956.
|
[6]周睿, 张志家, 张旺, 等. 多壁管增强泡沫铝结构动态响应及吸能性能研究[J]. 应用数学和力学, 2024,45(1): 12-24.(ZHOU Rui, ZHANG Zhijia, ZHANG Wang, et al. Dynamic response and energy absorption performances of multi-walled tube reinforced aluminum foam structure[J].Applied Mathematics and Mechanics,2024,45(1): 12-24. (in Chinese))
|
[7]范志庚, 万强, 牛红攀, 等. 计及时变演化特征的硅泡沫垫层非线性黏弹性模型研究[J]. 应用数学和力学, 2024,45(2): 167-174.(FAN Zhigeng, WAN Qiang, NIU Hongpan, et al. A nonlinear viscoelastic model for silicon rubber foam cushion considering time-varying evolution characteristics[J].Applied Mathematics and Mechanics,2024,45(2): 167-174. (in Chinese))
|
[8]MIAO Y G, ZHANG H N, HE H, et al. Mechanical behaviors and equivalent configuration of a polyurea under wide strain rate range[J].Composite Structures,2019,222: 110923.
|
[9]高宁, 朱志武. 铝合金应变率效应综述及其机理研究[J]. 应用数学和力学, 2014,35(S1): 208-212.(GAO Ning, ZHU Zhiwu. Study on the strain rate effects and mechanisms for aluminum alloys[J].Applied Mathematics and Mechanics,2014,35(S1): 208-212. (in Chinese))
|
[10]CHEN C Y, ZHANG C, LIU C L, et al. Rate-dependent tensile failure behavior of short fiber reinforced PEEK[J].Composites (Part B):Engineering,2018,136: 187-196.
|
[11]QIN D Y, MIAO Y G, LI Y L. Formation of adiabatic shearing band for high-strength Ti-5553 alloy: a dramatic thermoplastic microstructural evolution[J].Defence Technology,2022,18(11): 2045-2051.
|
[12]MIAO Y G, DU W X, YIN J P, et al. Characterizing multi mechanical behaviors for epoxy-like materials under wide strain rate range[J].Polymer Testing,2022,116: 107804.
|
[13]WU Z B, YIN J P, LI M, et al. Rate-dependent constitutive behavior and mechanism of CMDB under tension loading[J].Polymer Testing,2024,140: 108584.
|
[14]HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J].Proceedings of the Royal Society of London (Series A),1914,89(612): 411-413.
|
[15]MIYAMBO M E, VON KALLON D V, PANDELANI T, et al. Review of the development of the split Hopkinson pressure bar[J].Procedia CIRP,2023,119: 800-808.
|
[16]WANG L L.Foundations of Stress Waves[M]. Amsterdam: Elsevier, 2007: 43-49, 65-70.
|
[17]CHEN W, SONG B.Split Hopkinson (Kolsky) Bar Design, Testing and Applications[M]. New York: Springer, 2010: 37-51.
|
[18]卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术[M]. 北京: 科学出版社, 2013: 23-52.(LU Fangyun, CHEN Rong, LIN Yuliang, et al.Hopkinson Bar Techniques[M]. Beijing: Science Press, 2013: 23-52. (in Chinese)
|
[19]胡时胜. Hopkinson压杆实验技术的应用进展[J]. 实验力学, 2005,20(4): 589-594.(HU Shisheng. The application development of experimental technique of Hopkinson pressure bar[J].Journal of Experimental Mechanics,2005,20(4): 589-594. (in Chinese))
|
[20]ZHAO H, GARY G, KLEPACZKO J R. On the use of a viscoelastic split Hopkinson pressure bar[J].International Journal of Impact Engineering,1997,19(4): 319-330.
|
[21]CHEN W, ZHANG B, FORRESTAL M J. A split Hopkinson bar technique for low-impedance materials[J].Experimental Mechanics,1999,39: 81-85.
|
[22]CHEN W, LU F, ZHOU B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J].Experimental Mechanics,2000,40(1): 1-6.
|
[23]SONG B, CHEN W, JIANG X. Split Hopkinson pressure bar experiments on polymeric foams[J].International Journal of Vehicle Design,2005,37(2/3): 185-198.
|
[24]YIN J P, MIAO Y G, WU Z B, et al. A novel Hopkinson tension bar system for testing polymers under intermediate strain rate and large deformation[J].International Journal of Impact Engineering,2025,198: 105197.
|
[25]王宝珍, 郑宇轩, 胡时胜. 猪后腿肌肉的动态拉伸性能[J]. 爆炸与冲击, 2010,30(5): 449-455.(WANG Baozhen, ZHENG Yuxuan, HU Shisheng. Dynamic tensile properties of porcine ham muscle[J].Explosion and Shock Waves,2010,30(5): 449-455. (in Chinese))
|
[26]徐沛保, 巫绪涛, 李和平. 中高应变率下EPS泡沫的冲击压缩实验[J]. 实验力学, 2012,27(4): 480-485.(XU Peibao, WU Xutao, LI Heping. Impact compression experiment for EPS foam under mid-high strain rate[J].Journal of Experimental Mechanics,2012,27(4): 480-485. (in Chinese))
|
[27]MIAO Y G, LI Y L, DENG Q, et al. Investigation on experimental method of low-impedance materials using modified Hopkinson pressure bar[J].Journal of Beijing Institute of Technology,2015,24(2): 269-276.
|
[28]周永康, 陈力, 崔世堂. 一种新型软材料动态直接拉伸实验技术[J]. 振动与冲击, 2017,36(22): 144-148.(ZHOU Yongkang, CHEN Li, CUI Shitang. An improved SHTB experimental facility for soft material[J].Journal of Vibration and Shock,2017,36(22): 144-148. (in Chinese))
|
[29]鲍振宇, 温垚珂, 韩瑞国, 等. 弹道明胶的动态力学测试方法研究[J]. 中国测试, 2019,45(9): 33-37.(BAO Zhenyu, WEN Yaoke, HAN Ruiguo, et al. Study on dynamic mechanical testing method of ballistic gelatin[J].China Measurement & Test,2019,45(9): 33-37. (in Chinese))
|
[30]XU P D, TANG L Q, ZHANG Y R, et al. SHPB experimental method for ultra-soft materials in solution environment[J].International Journal of Impact Engineering,2022,159: 104051.
|
[31]WEN Y K, XU L, CHEN A J, et al. Dynamic compressive response of porcine muscle measured using a split Hopkinson bar system with a pair of PVDF force transducers[J].Defence Technology,2023,28: 298-305.
|
[32]MIAO Y, GOU X, SHEIKH M Z. A technique for in situ calibration of semiconductor strain gauges used in Hopkinson bar tests[J].Experimental Techniques,2018,42: 623-629.
|
[33]ZHANG J X, MIAO Y G, QIN Q H, et al. Static and dynamic experiments on hydrogels: effects of the chemical composition of the fluid[J].Mechanics of Materials,2021,154: 103717.
|
[34]LIU Y, DENG Q, WANG Y S, et al. Dynamic mechanical response and functional mechanisms in rabbit pulmonary tissue[J].Mechanics of Time-Dependent Materials,2024,28(4): 2921-2936.
|
[35]周风华, 王礼立, 胡时胜. 高聚物SHPB试验中试件早期应力不均匀性的影响[J]. 实验力学, 1992,7(1): 23-29.(ZHOU Fenghua, WANG Lili, HU Shisheng. On the effect of stress nonuniformness in polymer specimen of SHPB tests[J].Journal of Experimental Mechanics,1992,7(1): 23-29. (in Chinese))
|
[36]RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J].Journal of the American Ceramic Society,1994,77(1): 263-267.
|
[37]YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J].International Journal of Impact Engineering,2005,31(2): 129-150.
|
[38]王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005,25(1): 17-25.(WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J].Explosion and Shock Waves,2005,25(1): 17-25. (in Chinese))
|
[39]ZHU J, HU S, WANG L. An analysis of stress uniformity for concrete-like specimens during SHPB tests[J].International Journal of Impact Engineering,2009,36(1): 61-72.
|
[40]FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J].Experimental Mechanics,2001,41(1): 40-46.
|
[41]徐明利, 张若棋, 王悟, 等. 波形整形器在酚醛树脂的霍普金森压杆实验中的应用[J]. 爆炸与冲击, 2002,22(4): 377-380.(XU Mingli, ZHANG Ruoqi, WANG Wu, et al. Application of wave shaper in SHPB experimental study of phenolic resin[J].Explosion and Shock Waves,2002,22(4): 377-380. (in Chinese))
|
[42]SONG B, CHEN W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J].Experimental Mechanics,2004,44(3): 300-312.
|
[43]MIAO Y G. On loading ceramic-like materials using split Hopkinson pressure bar[J].Acta Mechanica,2018,229(8): 3437-3452.
|
[44]LIU L T, DENG Q, WANG R F, et al. Dynamic enhancement induced by interface for additively manufactured continuous carbon fiber reinforced composites[J].Polymer Testing,2024,132: 108382.
|
[45]YIN J P, ZHANG C X, SUN R H, et al. Controllable kilohertz impact fatigue loading functioned by cyclic stress wave of Hopkinson tension bar and its application for TC4 titanium alloy[J].International Journal of Fatigue,2025,194: 108828.
|
[46]ZHANG C X, SUN R H, YIN J P, et al. Failure behaviours of steel/aluminium threaded connections under impact fatigue[J].Engineering Failure Analysis,2025,174: 109473.
|
[47]MIAO Y G, LI Y L, LIU H Y, et al. Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar[J].International Journal of Mechanical Sciences,2016,108/109: 188-196.
|