留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑湿热老化的复合材料机匣包容性试验与数值分析

郑竟波 张颖 姜文龙 韦林 迟雪 伊文昭 刘璐璐 陈伟

郑竟波, 张颖, 姜文龙, 韦林, 迟雪, 伊文昭, 刘璐璐, 陈伟. 考虑湿热老化的复合材料机匣包容性试验与数值分析[J]. 应用数学和力学, 2025, 46(5): 661-675. doi: 10.21656/1000-0887.450289
引用本文: 郑竟波, 张颖, 姜文龙, 韦林, 迟雪, 伊文昭, 刘璐璐, 陈伟. 考虑湿热老化的复合材料机匣包容性试验与数值分析[J]. 应用数学和力学, 2025, 46(5): 661-675. doi: 10.21656/1000-0887.450289
ZHENG Jingbo, ZHANG Ying, JIANG Wenlong, WEI Lin, CHI Xue, YI Wenzhao, LIU Lulu, CHEN Wei. Tests and Numerical Analyses of the Composite Casing Containment Under Hydrothermal Environment[J]. Applied Mathematics and Mechanics, 2025, 46(5): 661-675. doi: 10.21656/1000-0887.450289
Citation: ZHENG Jingbo, ZHANG Ying, JIANG Wenlong, WEI Lin, CHI Xue, YI Wenzhao, LIU Lulu, CHEN Wei. Tests and Numerical Analyses of the Composite Casing Containment Under Hydrothermal Environment[J]. Applied Mathematics and Mechanics, 2025, 46(5): 661-675. doi: 10.21656/1000-0887.450289

考虑湿热老化的复合材料机匣包容性试验与数值分析

doi: 10.21656/1000-0887.450289
基金项目: 

国家自然科学基金(52375150);中央高校基本科研业务费(NC2022001)

详细信息
    作者简介:

    郑竟波(2000—),女,硕士生(E-mail: 947222529@qq.com);刘璐璐(1988—),女,研究员,教授,博士(通讯作者. E-mail: liululu@nuaa.edu.cn).

    通讯作者:

    刘璐璐(1988—),女,研究员,教授,博士(通讯作者. E-mail: liululu@nuaa.edu.cn).

  • 中图分类号: O313

Tests and Numerical Analyses of the Composite Casing Containment Under Hydrothermal Environment

Funds: 

The National Science Foundation of China(52375150)

  • 摘要: 为获得碳纤维增强树脂基复合材料(CFRP)机匣在服役环境下的包容特性,对其分别进行了湿热老化前后的两次高速冲击弹道试验,并建立了对应的机匣吸湿率分区湿热试验仿真模型与有限元高速冲击数值仿真分析模型.结果表明:湿热老化作用对于CFRP机匣的抗冲击能力及能量吸收能力均有显著影响.在高速冲击下,未湿热老化机匣的抗冲击能力及能量吸收能力优于湿热老化机匣.高速冲击下,CFRP机匣的损伤形式主要以纤维和基体的拉伸失效为主,伴随着一定数量的纤维压溃和面内剪切失效,压缩失效基本没有出现,损伤出现在冲击区域附近,并沿机匣轴向与周向扩展.此外,吸湿层的基体拉伸失效面积显著大于未老化层的基体拉伸失效面积,验证了湿热老化作用下基体力学性能的退化.
  • 陈光. 航空发动机结构设计分析[M]. 北京: 北京航空航天大学出版社, 2006: 548-551.(CHEN Guang.Analysis of Aeroengine Structure Design[M]. Beijing: Beihang University Press, 2006: 548

    -551. (in Chinese))
    [2]United States Air Force. Engine structural integrity program: MIL2STD21783B[S]. USA: Department of Defense, 2002.
    [3]中国民用航空局. 航空发动机适航规定: CCAR—33R2[S]. 北京: 中国民用航空局, 2016.(Civil Aviation Administration of China. Aviation engine air-worthiness regulations: CCAR—33R2[S]. Beijing: Civil Aviation Administration of China, 2016. (in Chinese))
    [4]HOLMES M. Carbon fibre reinforced plastics market continues growth path[J].Reinforced Plastics,2013,57(6): 24-29.
    [5]MARSH G. Aero engines lose weight thanks to composites[J].Reinforced Plastics,2012,56(6): 32-35.
    [6]MAZUMDAR S.Composites Manufacturing: Materials, Product, and Process Engineering[M]. Boca Raton: CRC Press, 2001.
    [7]沈尔明, 王志宏, 赵凤飞, 等. 风扇机匣材料应用现状与发展[J]. 航空制造技术, 2013,56(13): 92-95.(SHEN Erming, WANG Zhihong, ZHAO Fengfei, et al. Application and development of material for aeroengine fan case[J].Aeronautical Manufacturing Technology,2013,56(13): 92-95. (in Chinese))
    [8]李佳楠, 姜亚明, 项赫, 等. 高性能纤维增强树脂基复合材料湿热老化研究进展[J]. 化工新型材料, 2024,52(1): 1-7.(LI Jianan, JIANG Yaming, XIANG He, et al. Research progress on the hygrothermal aging of high-performance fiber reinforced resin matrix composites[J].New Chemical Materials,2024,52(1): 1-7. (in Chinese))
    [9]DEWHURST T B. The impact load on containment rings during a multiple blade shed in aircraft gas turbine engines[C]//Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. Orlando, FL, USA: ASME, 1991.
    [10]RICHARDSON I J, HYDE T M, BECKER A A, et al. A three-dimensional finite element investigation of the bolt stresses in an aero-engine Curvic coupling under a blade release condition[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2000,214(4): 231-245.
    [11]张伯熹, 宣海军, 吴荣仁. 航空发动机涡轮叶片包容模拟试验研究[J]. 机械工程师, 2006(10): 114-116.(ZHANG Boxi, XUAN Haijun, WU Rongren. Research on aero-engine turbine blade containment experiment[J].Mechanical Engineer,2006(10): 114-116. (in Chinese))
    [12]古兴瑾. 复合材料层板高速冲击损伤研究[D]. 南京: 南京航空航天大学, 2011.(GU Xingjin. Research on high velocity impact damage of composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese))
    [13]蔡雄峰. 复合材料层合板高速冲击损伤研究[D]. 天津: 中国民航大学, 2020.(CAI Xiongfeng. Research on high-speed impact damage of composite laminates[D]. Tianjin: Civil Aviation University of China, 2020. (in Chinese))
    [14]何庆, 宣海军, 刘璐璐. 某型发动机一级风扇机匣包容性数值仿真[J]. 航空动力学报, 2012,27(2): 295-300.(HE Qing, XUAN Haijun, LIU Lulu. Numerical analysis of real aero-engine first-stage fan blade containment[J].Journal of Aerospace Power,2012,27(2): 295-300. (in Chinese))
    [15]杜长美. 三维四向编织复合材料湿热老化后低速冲击及其剩余压缩性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2023.(DU Changmei. Study on low-velocity impact and residual compression properties of three-dimensional four-directions braided composites after damp-heat aging[D]. Harbin: Harbin University of Science and Technology, 2023. (in Chinese))
    [16]MOKHTAR H, SICOT O, ROUSSEAU J, et al. The influence of ageing on the impact damage of carbon epoxy composites[J].Procedia Engineering,2011,10: 2615-2620.
    [17]HOSUR M V, JAIN K, CHOWDHURY F, et al. Low-velocity impact response of carbon/epoxy laminates subjected to cold-dry and cold-moist conditioning[J].Composite Structures,2007,79(2): 300-311.
    [18]ZHANG C, BINIENDA W K, MORSCHER G N, et al. Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites[J].Composites (Part A):Applied Science and Manufacturing,2013,46: 34-44.
    [19]ATAS C, DOGAN A. An experimental investigation on the repeated impact response of glass/epoxy composites subjected to thermal ageing[J].Composites Part B:Engineering,2015,75: 127-134.
    [20]徐凯龙. 循环湿热作用下三维编织复合材料力学性能与抗冲击性能研究[D]. 南京: 南京航空航天大学, 2018.(XU Kailong. Effect of cyclic hygrothermal aging on mechanical properties and impact resistance of three dimensional braided composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese))
    [21]LIU L, ZHAO Z, CHEN W, et al. An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites[J].Composite Structures,2018,204: 645-657.
    [22]惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击, 2016,35(22): 161-168.(HUI Xulong, MU Rangke, BAI Chunyu, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J].Journal of Vibration and Shock,2016,35(22): 161-168. (in Chinese))
  • 加载中
计量
  • 文章访问数:  36
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2024-11-23
  • 网络出版日期:  2025-05-30

目录

    /

    返回文章
    返回