|
VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. Buckling of thin-walled structures through a higher order beam model[J].Computers and Structures,2017,180: 104-116.
|
|
[2]YANG Y B, MO X Q, SHI K, et al. Effect of damping on torsional-flexural frequencies of monosymmetric thin-walled beams scanned by moving vehicles[J].Thin-Walled Structures,2024,198: 111633.
|
|
[3]YUAN J R, DING H. Three-dimensional dynamic model of the curved pipe based on the absolute nodal coordinate formulation[J].Mechanical Systems and Signal Processing,2023,194: 110275.
|
|
[4]YANG Y B, KUO S R. Effect of curvature on stability of curved beams[J].Journal of Structural Engineering,1987,113(6): 1185-1202.
|
|
[5]CHOI S, KIM Y Y. Higher-order Vlasov torsion theory for thin-walled box beams[J].International Journal of Mechanical Sciences,2021,195: 106231.
|
|
[6]YOON K Y, PARK N H, CHOI Y J, et al. Natural frequencies of thin-walled curved beams[J].Finite Elements in Analysis and Design,2006,42(13): 1176-1186.
|
|
[7]CAI Y, CHEN H J, LV X Y, et al. Dynamic response of a thin-walled curved beam with a mono-symmetric cross-section under a moving mass[J].Thin-Walled Structures,2023,189: 110941.
|
|
[8]PARK S K, GAO X L. Bernoulli-Euler beam model based on a modified couple stress theory[J].Journal of Micromechanics and Microengineering,2006,16(11): 2355-2359.
|
|
[9]赵翔, 孟诗瑶. 基于Green函数分析Euler-Bernoulli双曲梁系统的受迫振动[J]. 应用数学和力学, 2023,44(2): 168-177.(ZHAO Xiang, MENG Shiyao. Forced vibration analysis of Euler-bernoulli double-beam systems by means of Green’s functions[J].Applied Mathematics and Mechanics,2023,44(2): 168-177. (in Chinese))
|
|
[10]MANTA D, GONCALVES R. A geometrically exact Kirchhoff beam model including torsion warping[J].Computers & Structures,2016,177: 192-203.
|
|
[11]卓英鹏, 王刚, 齐朝晖, 等. 节点参数含应变的空间几何非线性样条梁单元[J]. 应用数学和力学, 2022,43(9): 987-1003.(ZHUO Yingpeng, WANG Gang, QI Zhaohui, et al. A spatial geometric nonlinearity spline beam element with nodal parameters containing strains[J].Applied Mathematics and Mechanics,2022,43(9): 987-1003. (in Chinese))
|
|
[12]SCHARDT R. Generalized beam theory: an adequate method for coupled stability problems[J].Thin-Walled Structures,1994,19(2/3/4): 161-180.
|
|
[13]KIM H, JANG G W. Higher-order thin-walled beam analysis for axially varying generally shaped cross sections with straight cross-section edges[J].Computers & Structures,2017,189: 83-100.
|
|
[14]VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. A higher order thin-walled beam model including warping and shear modes[J].International Journal of Mechanical Sciences,2013,66: 67-82.
|
|
[15]VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. Definition of warping modes within the context of a higher order thin-walled beam model[J].Computers and Structures,2015,147: 68-78.
|
|
[16]SHABANA A A. Definition of the slopes and the finite element absolute nodal coordinate formulation[J].Multibody System Dynamics,1997,1: 339-348.
|
|
[17]MATIKAINEN M K, DMITROCHENKO O, MIKKOLA A.Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation[C]//International Conference ofNumerical Analysis and Applied Mathematics 〖STBX〗2010. Rhodes, Greece: AIP Publishing, 2010: 1266-1270.
|
|
[18]LI P, GANTOI F M, SHABANA A A. Higher order representation of the beam cross section deformation in large displacement finite element analysis[J].Journal of Sound and Vibration,2011,330(26): 6495-6508.
|
|
[19]SHEN Z X, LI P, LIU C, et al. A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation[J].Nonlinear Dynamics,2014,77(3): 1019-1033.
|
|
[20]EBEL H, MATIKAINEN M K, HURSKAINEN V V, et al. Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity[J].Nonlinear Dynamics,2017,88(2): 1075-1091.
|
|
[21]赵北, 熊斯浚, 陈亮, 等. 基于弹性边界的多墙式盒段结构复合材料壁板屈曲分析方法[J]. 应用数学和力学, 2024,45(9): 1182-1199.(ZHAO Bei, XIONG Sijun, CHEN Liang, et al. A buckling analysis method for composite panels in multiweb box structures based on elastic boundaries[J].Applied Mathematics and Mechanics,2024,45(9): 1182-1199.(in Chinese))
|
|
[22]SHEN Z. Thin-walled composite beam elementsvia the absolute nodal coordinate formulation[J].Multibody System Dynamics,2024,62(1): 107-135.
|