|
GALDI G P, RIONERO S. A note on the existence and uniqueness of solutions of the micropolar fluid equations[J].International Journal of Engineering Science,1977,15(2): 105-108.
|
|
[2]COWIN S C. Polar fluids[J].The Physics of Fluids,1968,11(9): 1919-1927.
|
|
[3]ERINGEN A. Theory of micropolar fluids[J].Indiana University Mathematics Journal,1966,16(1): 16001.
|
|
[4]UKASZEWICZ G.Micropolar Fluids: Theory and Applications[M]. Boston: Birkhuser, 1999.
|
|
[5]JIA C M, TAN Z, ZHOU J F. Global well-posedness of compressible magneto-micropolar fluid equations[J].The Journal of Geometric Analysis,2023,33: 358.
|
|
[6]ROJAS-MEDAR M A. Magneto-micropolar fluid motion: existence and uniqueness of strong solution[J].Mathematische Nachrichten,1997,188(1): 301-319.
|
|
[7]ROJAS MEDAR M A, BOLDRINI J L. Magneto-micropolar fluid motion: existence of weak solutions[J].Revista Matemática Complutense,1998,11(2): 443-460.
|
|
[8]UKASZEWICZ G, SADOWSKI W. Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains[J].Zeitschrift für Angewandte Mathematik und Physik ZAMP,2004,55(2): 247-257.
|
|
[9]MATSUURA K. Exponential attractors for 2D magneto-micropolor fluid flow in bounded domain[J].Discrete and Continuous Dynamical Systems,2005, 2〖STHZ〗005: 634-641.
|
|
[10]YANG H J, HAN X L, WANG X, et al. Homogenization of trajectory statistical solutions for the 3D incompressible magneto-micropolar fluids[J].Discrete and Continuous Dynamical Systems: S,2023,16(10): 2672-2685.
|
|
[11]NICHE C J, PERUSATO C F. Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids[J].Zeitschrift für Angewandte Mathematik und Physik,2022,73: 48.
|
|
[12]TAN Z, WU W, ZHOU J. Global existence and decay estimate of solutions to magneto-micropolar fluid equations[J].Journal of Differential Equations,2019,266(7): 4137-4169.
|
|
[13]ZHAO C, LI Y,UKASZEWICZ G. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids[J]. Zeitschrift für Angewandte Mathematik und Physik,2020,71(4): 141.
|
|
[14]LI Y, LI X. Equivalence between invariant measures and statistical solutions for the 2D non-autonomous magneto-micropolar fluid equations[J].Mathematical Methods in the Applied Sciences,2022,45(5): 2638-2657.
|
|
[15]田琴, 向长林, 别群益. 三维稳态磁流体动力学方程的Liouville定理[J]. 应用数学和力学, 2023,44(10): 1250-1259. (TIAN Qin, XIANG Changlin, BIE Qunyi. On the Liouville theorems for 3D stationary magnetohydrodynamic equations[J].Applied Mathematics and Mechanics,2023,44(10): 1250-1259.(in Chinese))
|
|
[16]FOIAS C, MANLEY O, ROSA R, et al.Navier-Stokes Equations and Turbulence[M]. Cambridge: Cambridge University Press, 2001.
|
|
[17]SUN W. The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay[J].Electronic Research Archive,2020,28(3): 1343-1356.
|
|
[18]ARRIETA J M, CARVALHO A N. Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations[J].Transactions of the American Mathematical Society,2000,352(1): 285-310.
|
|
[19]FUJITA H, KATO T. On the Navier-Stokes initial value problem I[J].Archive for Rational Mechanics and Analysis,1964,26: 269-315.
|
|
[20]SUN W, LI Y. Pullback dynamical behaviors of the non-autonomous micropolar fluid flows with minimally regular force and moment[J].Communications in Mathematical Sciences,2018,16(4): 1043-1065.
|
|
[21]TEMAM R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 2012.
|
|
[22]GARCA-LUENGO J, MARN-RUBIO P, REAL J, et al. Pullback attractors for the non-autonomous 2D Navier-Stokes equations for minimally regular forcing[J].Discrete & Continuous Dynamical Systems: A,2014,34(1): 203-227.
|