留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合几何与网格信息的仿真模型快速重构方法

李红庆 倪晨君 王博 蔡永明 张音旋 陈亮 田阔.

李红庆, 倪晨君, 王博, 蔡永明, 张音旋, 陈亮, 田阔.. 融合几何与网格信息的仿真模型快速重构方法[J]. 应用数学和力学, 2025, 46(8): 947-958. doi: 10.21656/1000-0887.460030
引用本文: 李红庆, 倪晨君, 王博, 蔡永明, 张音旋, 陈亮, 田阔.. 融合几何与网格信息的仿真模型快速重构方法[J]. 应用数学和力学, 2025, 46(8): 947-958. doi: 10.21656/1000-0887.460030
LI Hongqing, NI Chenjun, WANG Bo, CAI Yongming, ZHANG Yinxuan, CHEN Liang, TIAN Kuo. A Fast Re-Modelling Method for Simulation Models by Fusing Geometric Information and Simulation Information[J]. Applied Mathematics and Mechanics, 2025, 46(8): 947-958. doi: 10.21656/1000-0887.460030
Citation: LI Hongqing, NI Chenjun, WANG Bo, CAI Yongming, ZHANG Yinxuan, CHEN Liang, TIAN Kuo. A Fast Re-Modelling Method for Simulation Models by Fusing Geometric Information and Simulation Information[J]. Applied Mathematics and Mechanics, 2025, 46(8): 947-958. doi: 10.21656/1000-0887.460030

融合几何与网格信息的仿真模型快速重构方法

doi: 10.21656/1000-0887.460030
基金项目: 

国家自然科学基金(U21A20429);陕西省自然科学基础研究计划(2025SYSSYSZD102);辽宁省优秀青年基金(2024JH3/10200003)

详细信息
    作者简介:

    李红庆(1997—),男,博士生(E-mail: HongQ.Li@mail.dlut.edu.cn);田阔(1989—),男,教授,博士生导师(通讯作者. E-mail: tiankuo@dlut.edu.cn).

  • 中图分类号: O39

A Fast Re-Modelling Method for Simulation Models by Fusing Geometric Information and Simulation Information

Funds: 

The National Science Foundation of China(U21A20429)

  • 摘要: 复杂结构的设计迭代过程中,往往涉及大量的重建模与重分析,导致计算成本较高且耗时较长.针对这一挑战,该文提出了一种融合几何与网格信息的仿真模型快速重构方法.该方法通过精确捕捉复杂几何模型的结构特征并进行数字化表达,进而训练几何模型的特征信息驱动仿真模型进行自动重构.首先,引入拟共形映射技术对复杂曲面进行平面参数化,通过栅格采样技术获取平面控制点,根据映射前后对应关系生成曲面控制点,作为结构特征的数字化表达;其次,利用径向基函数算法,对修改前后几何模型的控制点进行训练,通过网格映射技术实现对仿真模型的自动化重构.最后,为了验证所提出方法的有效性,以飞机隔框结构作为典型算例进行研究.与传统的仿真模型重构方法相比,最大应力误差仅为0.87%.所需的人机操作步数减少95.40%,模型重构耗时减少96.67%.结果表明,所提出方法在保证仿真精度的同时,显著降低了仿真模型重构的时间,实现了基于几何与网格模型映射孪生的快速设计.
  • [2]KHAN H A, SHAHID A, KHUSHBASH S, et al. Investigation of failure and development of mitigation techniques of a cracked aircraft wing spar cap[J].Engineering Failure Analysis,2023,147: 107149.
    胡嘉欣, 芮姝, 高瑞朝, 等. 飞行器结构布局与尺寸混合优化方法[J].航空学报, 2022,43(5): 225363.(HU Jiaxin, RUI Shu, GAO Ruichao, et al. Hybrid optimization method for structural layout and size of flight vehicles[J].Acta Aeronautica et Astronautica Sinica,2022

    ,43(5): 225363. (in Chinese))
    [3]张永杰, 周静飘, 石磊, 等. 基于PRSEUS结构的翼身融合民机中央机体球亏面框优化设计方法[J].航空学报, 2024,45(12): 229331.(ZHANG Yongjie, ZHOU Jingpiao, SHI Lei, et al. Optimization design method of central fuselage spherical deficient surface frames in blended-wing-body civil aircraft based on PRSEUS structure[J].Acta Aeronautica et Astronautica Sinica,2024,45(12): 229331. (in Chinese))
    [4]张伦武, 周堃, 赵方超, 等. 装备环境适应性研究进展及展望[J].装备环境工程, 2024,21(5): 1-12.(ZHANG Lunwu, ZHOU Kun, ZHAO Fangchao, et al. Research progress and prospect of materiel environmental worthiness[J].Equipment Environmental Engineering,2024,21(5): 1-12. (in Chinese))
    [5]吴建国, 李海波, 冯国林, 等. 新形势下航天装备环境试验技术的未来发展趋势[J].装备环境工程, 2024,21(5): 34-40.(WU Jianguo, LI Haibo, FENG Guolin, et al. Future development trend of environmental testing technology for aerospace equipment under new circumstances[J].Equipment Environmental Engineering,2024,21(5): 34-40. (in Chinese))
    [6]BAZILEVS Y, CALO V M, COTTRELL J A, et al. Isogeometric analysis using T-splines[J].Computer Methods in Applied Mechanics and Engineering,2010,199(5/6/7/8): 229-263.
    [7]SUN Y, ZHOU Z, LAI P, et al. Isogeometric analysis-based buckling optimization framework for grid-stiffened shells using asymptotic homogenization method and Rayleigh-Ritz method[J].Structural and Multidisciplinary Optimization,2022,65(11): 330.
    [8]NINI CJ, BUI H G, MESCHKE G. BIM-to-IGA: a fully automatic design-through-analysis workflow for segmented tunnel linings[J].Advanced Engineering Informatics,2020,46: 101137.
    [9]HAO P, WANG Y, JIN L Z, et al. An isogeometric design-analysis-optimization workflow of stiffened thin-walled structures via multilevel NURBS-based free-form deformations (MNFFD)[J].Computer Methods in Applied Mechanics and Engineering,2023,408: 115936.
    [10]金灵智, 王禹, 郝鹏, 等. 加筋路径驱动的板壳自适应等几何屈曲分析[J].力学学报, 2023,55(5): 1151-1164.(JIN Lingzhi, WANG Yu, HAO Peng, et al. Adaptive isogeometric buckling analysis of stiffened panels driven by stiffener paths[J].Chinese Journal of Theoretical and Applied Mechanics,2023,55(5): 1151-1164. (in Chinese))
    [11]HAO P, LIU D C, LIU H, et al. Intelligent optimum design of large-scale gradual-stiffness stiffened panels via multi-level dimension reduction[J].Computer Methods in Applied Mechanics and Engineering,2024,421: 116759.
    [12]WOBBES E, BAZILEVS Y, KURAISHI T, et al. Complex-geometry IGA mesh generation: application to structural vibrations[J].Computational Mechanics,2024,74(2): 247-261.
    [13]RANK E, RUESS M, KOLLMANNSBERGER S, et al. Geometric modeling, isogeometric analysis and the finite cell method[J].Computer Methods in Applied Mechanics and Engineering,2012,249: 104-115.
    [14]PERDUTA A, PUTANOWICZ R. Tools and techniques for building models for isogeometric analysis[J].Advances in Engineering Software,2019,127: 70-81.
    [15]CAMBA J D, CONTERO M, COMPANY P, et al. The cost of change in parametric modeling: a roadmap[J].Computer-Aided Design and Applications,2020,18(3): 634-643.
    [16]IYER N, JAYANTI S, LOU K, et al. Three-dimensional shape searching: state-of-the-art review and future trends[J].Computer-Aided Design,2005,37(5): 509-530.
    [17]MOHR J, KLEINSCHRODT C, TREMMEL S, et al. Compatibility improvement of interrelated items in exchange files: a general method for supporting the data integrity of digital twins[J].Applied Sciences,2022,12(16): 8099.
    [18]VASANTHA G, PURVES D, QUIGLEY J, et al. Common design structures and substitutable feature discovery in CAD databases[J].Advanced Engineering Informatics,2021,48: 101261.
    [19]YUN H, KIM E, KIM D M, et al. Machine learning for object recognition in manufacturing applications[J].International Journal of Precision Engineering and Manufacturing,2023,24(4): 683-712.
    [20]WU H, LEI R, PENG Y, et al. AAGNet: a graph neural network towards multi-task machining feature recognition[J].Robotics and Computer-Integrated Manufacturing,2024,86: 102661.
    [21]NING F, SHI Y, CAI M, et al. Part machining feature recognition based on a deep learning method[J].Journal of Intelligent Manufacturing,2023,34(2): 809-821.
    [22]ZUBAIR A F, ABU MANSOR M S. Automatic feature recognition of regular features for symmetrical and non-symmetrical cylinder part using volume decomposition method[J].Engineering With Computers,2018,34: 843-863.
    [23]HOU B, HUANG Z, ZHOU H, et al. A hybrid hint-based and fuzzy comprehensive evaluation method for optimal parting curve generation in injection mold design[J].The International Journal of Advanced Manufacturing Technology,2021,112: 2133-2148.
    [24]YAO X, WANG D, YU T, et al. A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models[J].Journal of Intelligent Manufacturing,2023,34(6): 2599-2610.
    [25]XIAO A, HUANG J, GUAN D, et al. Unsupervised point cloud representation learning with deep neural networks: a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(9): 11321-11339.
    [26]COLLIGAN A R, ROBINSON T T, NOLAN D C, et al. Point cloud dataset creation for machine learning on CAD models[J].Computer-Aided Design and Applications,2021,18(4): 760-771.
    [27]WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J].ACM Transactions on Graphics,2019,38(5): 1-12.
    [28]YEO C, KIM B C, CHEON S, et al. Machining feature recognition based on deep neural networks to support tight integration with 3D CAD systems[J].Scientific Reports,2021,11(1): 22147.
    [29]TIAN K, LI H Q, HUANG L, et al. Data-driven modelling and optimization of stiffeners on undevelopable curved surfaces[J].Structural and Multidisciplinary Optimization,2020,62: 3249-3269.
    [30]LI H Q, LI Z C, CHENG Z Z, et al. A data-driven modelling and optimization framework for variable-thickness integrally stiffened shells[J].Aerospace Science and Technology,2022,129: 107839.
    [31]LI H Q, LIU X W, GAO Y M, et al. Active learning-driven control point optimization method for efficient modeling of complex stiffened curved shells[J].Engineering Structures,2024,302: 117412.
    [32]VOGIATZIS P, MA M, CHEN S, et al. Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping[J].Computer Methods in Applied Mechanics and Engineering,2018,328: 477-497.
    [33]NIAN X, CHEN F. Planar domain parameterization for isogeometric analysis based on Teichmüller mapping[J].Computer Methods in Applied Mechanics and Engineering,2016,311: 41-55.
    [34]付君健, 徐勇, 周祥曼, 等. 基于联合仿真的曲面共形多孔结构拓扑优化方法[J].北京航空航天大学学报, 2024,50(9): 2781-2790.(FU Junjian, XU Yong, ZHOU Xiangman, et al. Topological optimization method for conformal cellular structures on surfaces based on co-simulation[J].Journal of Beijing University of Aeronautics and Astronautics,2024,50(9): 2781-2790. (in Chinese))
    [35]MENG T W, CHOI G P T, LUI L M. TEMPO: feature-endowed Teichmüller extremal mappings of point clouds[J].SIAM Journal on Imaging Sciences,2016,9(4): 1922-1962.
    [36]QUINN J A, LANGBEIN F C, LAI Y K, et al. Generalized anisotropic stratified surface sampling[J].IEEE Transactions on Visualization and Computer Graphics,2013,19(7): 1143-1157.
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-03-09
  • 网络出版日期:  2025-09-10

目录

    /

    返回文章
    返回