留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交异性双材料Ⅱ型界面裂纹问题研究

杨维阳 张少琴 李俊林 马玉兰

杨维阳, 张少琴, 李俊林, 马玉兰. 正交异性双材料Ⅱ型界面裂纹问题研究[J]. 应用数学和力学, 2009, 30(5): 547-555. doi: 10.3879/j.issn.1000-0887.2009.05.005
引用本文: 杨维阳, 张少琴, 李俊林, 马玉兰. 正交异性双材料Ⅱ型界面裂纹问题研究[J]. 应用数学和力学, 2009, 30(5): 547-555. doi: 10.3879/j.issn.1000-0887.2009.05.005
YANG Wei-yang, ZHANG Shao-qin, LI Jun-lin, MA Yu-lan. Researches on Interface Crack Problems for Mode Ⅱ of Double Dissimilar Orthotropic Composite Materials[J]. Applied Mathematics and Mechanics, 2009, 30(5): 547-555. doi: 10.3879/j.issn.1000-0887.2009.05.005
Citation: YANG Wei-yang, ZHANG Shao-qin, LI Jun-lin, MA Yu-lan. Researches on Interface Crack Problems for Mode Ⅱ of Double Dissimilar Orthotropic Composite Materials[J]. Applied Mathematics and Mechanics, 2009, 30(5): 547-555. doi: 10.3879/j.issn.1000-0887.2009.05.005

正交异性双材料Ⅱ型界面裂纹问题研究

doi: 10.3879/j.issn.1000-0887.2009.05.005
基金项目: 山西省自然科学基金资助项目(2007011008)
详细信息
    作者简介:

    杨维阳(1937- )男,陕西临潼人,教授,博士生导师(Tel:+86-351-6999190;E-mail:yangweiyang@sohu.com).

  • 中图分类号: O346.1;O174.5

Researches on Interface Crack Problems for Mode Ⅱ of Double Dissimilar Orthotropic Composite Materials

  • 摘要: 探讨正交异性双材料Ⅱ型界面裂纹问题,给出了它的力学模型.将控制方程化为广义重调和方程,借助复变函数方法推出了含两个应力奇异指数的应力函数.基于边界条件得到了两个八元非齐次线性方程组.求解该方程组,在双材料工程参数满足适当的条件下确定了两个实应力奇异指数.根据极限的唯一性定理推出了应力强度因子的公式和裂纹尖端应力场的理论解.作为特例,当两种正交异性材料相同时,可以推出正交异性单材料Ⅱ型断裂的已有结果.
  • [1] 戴瑛,嵇醒.界面端应力奇异性及界面应力分布规律研究[J].中国科学,G辑,2007,37(4):535-543.
    [2] 陈瑛,乔丕忠,姜弘道,等.双材料界面断裂力学模型与实验方法[J].力学进展,2008,38(1):53-61.
    [3] Williams M L.The stresses around a fault or crack in dissimilar media[J].Bulletin of the Seismological Society of America,1959,49(2):199-204.
    [4] Zhang X S.A central crack at the interface between two different orthotropic media for the mode Ⅰ and mode Ⅱ[J].Engineering Fracture Mechanics,1989,33(3):327-333. doi: 10.1016/0013-7944(89)90083-0
    [5] Suo Z G,Hutchinson J W.Interface crack between two elastic layers[J].International Journal of Fracture,1990,43(1):1-18. doi: 10.1007/BF00018123
    [6] Erdogan F,Wu B H.Interface crack problems in layered orthotropic materials[J].Journal of the Mechanics and Physics of Solids,1993,41(5):889-917. doi: 10.1016/0022-5096(93)90004-Y
    [7] Marsavina L,Sadowski T.Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface[J].International Journal of Fracture,2007,145(3):237-243. doi: 10.1007/s10704-007-9124-z
    [8] Nagai M,Ikeda T,Miyazaki N.Stress intensity factor analysis of an interface crack between dissimilar anisotropic materials under thermal stress using the finite element analysis[J].International Journal of Fracture,2007,146(4):233-248. doi: 10.1007/s10704-007-9163-5
    [9] 马开平,柳春图.双材料界面裂纹平面问题的半权函数法[J].应用数学和力学,2004,25(11): 1135-1142.
    [10] Sih G C,Chen E P.Cracks in Composite Materials[M].In: Sih G C,Ed.Mechanics of Fracture.Vol 6.Hague: Martinus Nijhoff Publishers,1981,117-135.
    [11] Chang J,Xu J Q.The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface[J].International Journal of Mechanical Sciences,2007,49(7): 888-897. doi: 10.1016/j.ijmecsci.2006.11.009
    [12] 姚河省,李铁林,张少琴.正交异性双材料界面裂纹的理论研究 [J].太原科技大学学报,2006,27(2): 118-123.
    [13] 周振功,王彪.位于两不同正交各向异性半平面间张开型界面裂纹的性能分析[J].应用数学和力学,2004,25(7):667-676.
    [14] 李俊林,张少琴,杨维阳.正交异性双材料界面裂纹尖端应力场[J].应用数学和力学,2008,29(8):947-953.
    [15] Corten H T .Fracture Mechanics of Composites[M].In: Liebowitz H,Ed.Fracture.Vol 7.New York: Academic Press,1972,695-703.
    [16] 列赫尼兹基C Γ.各向异性板[M].胡海昌 译.北京: 科学出版社,1963,1-20.
    [17] 杨维阳,李俊林,张雪霞.复合材料断裂复变方法[M].北京:科学出版社,2005,26-32.
    [18] 余家荣.复变函数[M].北京:人民教育出版社,1979,19-28.
  • 加载中
计量
  • 文章访问数:  1714
  • HTML全文浏览量:  212
  • PDF下载量:  1230
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-18
  • 修回日期:  2009-03-26
  • 刊出日期:  2009-05-15

目录

    /

    返回文章
    返回