留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏微分方程(组)完全对称分类微分特征列集算法

特木尔朝鲁 白玉山

特木尔朝鲁, 白玉山. 偏微分方程(组)完全对称分类微分特征列集算法[J]. 应用数学和力学, 2009, 30(5): 556-566. doi: 10.3879/j.issn.1000-0887.2009.05.006
引用本文: 特木尔朝鲁, 白玉山. 偏微分方程(组)完全对称分类微分特征列集算法[J]. 应用数学和力学, 2009, 30(5): 556-566. doi: 10.3879/j.issn.1000-0887.2009.05.006
Temuer Chaolu, BAI Yu-shan. Differential Characteristic Set Algorithm for the Complete Symmetry Classification of (Partial) Differential Equations[J]. Applied Mathematics and Mechanics, 2009, 30(5): 556-566. doi: 10.3879/j.issn.1000-0887.2009.05.006
Citation: Temuer Chaolu, BAI Yu-shan. Differential Characteristic Set Algorithm for the Complete Symmetry Classification of (Partial) Differential Equations[J]. Applied Mathematics and Mechanics, 2009, 30(5): 556-566. doi: 10.3879/j.issn.1000-0887.2009.05.006

偏微分方程(组)完全对称分类微分特征列集算法

doi: 10.3879/j.issn.1000-0887.2009.05.006
基金项目: 教育部博士点基金资助项目(20070128001);上海市教委支出预算资助项目(2008069);上海市教委科研创新资助项目(09YZ239);内蒙古自然科学基金重点资助项目(200607010103)
详细信息
    作者简介:

    特木尔朝鲁(1962- ),男,内蒙古人,蒙古族,教授,博士(联系人.Tel:+86-21-38282233;E-mail:tmchaolu@dbc.shmtu.edu.cn).

  • 中图分类号: O152.5;O175.2

Differential Characteristic Set Algorithm for the Complete Symmetry Classification of (Partial) Differential Equations

  • 摘要: 给出了一个确定含参数偏微分方程(组)的完全对称分类微分特征列集算法,该算法能够直接、系统地确定偏微分方程(组)的完全对称分类.用给出的算法获得了含任意函数类参数的线性和非线性波动方程完全势对称分类.这也是微分形式特征列集算法(微分形式吴方法)在微分方程领域中的新应用.
  • [1] Olver P J.Applications of Lie Groups to Differential Equations[M].New York/Berlin: Springer-Verlag, 1991.
    [2] Bluman G W,Kumei Sukeyuki. Symmetries and Differential Equations[M](App Math Sci,81). Beijing:Springer-Velag,World Publishing Corp, 1991.
    [3] Ovsiannikov L W.Group Analysis of Differential Equations[M].transl Ames W F.New York/London:Academic Press, 1982.(English version)
    [4] Arnol'd V I.Mathematical Methods of Classical Mechanics[M].New York: Springer-Verlag, 1978.
    [5] Bluman G W,Chaolu Temuer,Sahadevan R.Local and nonlocal symmetries for nonlinear telegraph equations[J].J Math Phys,2005,46(2):1-12.
    [6] Clarkson P A,Mansfield E L. Open problems in symmetry analysis[A].In:Leslie J A,Robart T,Eds.Geometrical Study of Differential Equations[C].285.Contemporary Mathematics Series.Providence, RI:A M S,2001,195-205.
    [7] Reid G J,Wittkoipf Allan D.Determination of maximal symmetry groups of classes of differential equations[A].In:Proceedings of the 2000 International Symposium on Symboic and Algebraic Computation[C].St Andrews, Scotland,New York,NY:ACM,2000,272-280.
    [8] 高小山,王定康,杨宏.方程求解与机器证明——基于MMP的问题求解[M].北京:科学出版社,2006.
    [9] 吴文俊.初等几何定理机器证明的基本原理[J].系统科学与数学,1984,4(3):207-235.
    [10] WU Wen-tsun.Mathematics Mechanization[M].Beijing/Dordrecht/Boston/London: Science Press,Kluwer Academic Publishers, 2000.
    [11] WU Wen-tsun. On the foundation of algebraic differential geometry[J].J Systems Sci & Comp,1989,2(4): 289-312.
    [12] 朝鲁,高小山.微分多项式系统的近微分特征列集[J].数学学报,2002,45(6): 1041-1050.
    [13] Temuer Chaolu.An algorithmic theory of reduction of differential polynomial system[J].Adv Math,2003,32(2):208-220.
    [14] Baikov V A, Gazizov R A,Ibragimov N H.Approximate group analysis of nonlinear equationutt-(f(u)ux)x+[KG*4]. (u)ut=0[J].Differentsialinge,Uravnenign,1988,24(7): 1127-1138.
  • 加载中
计量
  • 文章访问数:  1964
  • HTML全文浏览量:  206
  • PDF下载量:  1084
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-06-01
  • 修回日期:  2009-03-09
  • 刊出日期:  2009-05-15

目录

    /

    返回文章
    返回