留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

指数型体积分数功能梯度材料的薄壁圆柱壳振动

A·G·沙哈 T·曼穆德 M·N·那姆

A·G·沙哈, T·曼穆德, M·N·那姆. 指数型体积分数功能梯度材料的薄壁圆柱壳振动[J]. 应用数学和力学, 2009, 30(5): 567-574. doi: 10.3879/j.issn.1000-0887.2009.05.007
引用本文: A·G·沙哈, T·曼穆德, M·N·那姆. 指数型体积分数功能梯度材料的薄壁圆柱壳振动[J]. 应用数学和力学, 2009, 30(5): 567-574. doi: 10.3879/j.issn.1000-0887.2009.05.007
Abdul Ghafar Shah, Tahir Mahmood, Muhammad Nawaz Naeem. Vibrations of FGM Thin Cylindrical Shells With Exponential Volume Fraction Law[J]. Applied Mathematics and Mechanics, 2009, 30(5): 567-574. doi: 10.3879/j.issn.1000-0887.2009.05.007
Citation: Abdul Ghafar Shah, Tahir Mahmood, Muhammad Nawaz Naeem. Vibrations of FGM Thin Cylindrical Shells With Exponential Volume Fraction Law[J]. Applied Mathematics and Mechanics, 2009, 30(5): 567-574. doi: 10.3879/j.issn.1000-0887.2009.05.007

指数型体积分数功能梯度材料的薄壁圆柱壳振动

doi: 10.3879/j.issn.1000-0887.2009.05.007
详细信息
  • 中图分类号: O327

Vibrations of FGM Thin Cylindrical Shells With Exponential Volume Fraction Law

  • 摘要: 研究了指数型体积分数对功能梯度薄圆柱壳振动频率的影响.壳体厚度方向上的材料特性呈指数律变化.由Love薄壳理论,得到应变-位移及曲率-位移关系表达式A·D2利用Rayleigh-Ritz方法,导出壳体的固有频率方程.假定轴向形态关系是典型的梁函数.壳体的固有频率取决于组合材料的体积分数.所得结果与已有文献的结果进行对比分析,说明本方法是正确的.
  • [1] Love A E H. On the small free vibrations and deformations of a thin elastic shell[J]. Philosachical Transactions of the Royal Society of London,Series A,1888,179:491-549. doi: 10.1098/rsta.1888.0016
    [2] Leissa A W. Vibration of shells[R]. NASA SP-288,1973; Reprinted by the Acoustical Society of America,American Institute of Physics,1993.
    [3] Blevins R D.Formulas for Natural Frequency and Mode Shape[M].New York: Van Nostrand Reinhold,1979.
    [4] Markus S. The Mechanics of Vibrations of Cylindrical Shell[M].New York: Elsevier,1988.
    [5] Arnold R N,Warburton G B. Flexural vibrations of the walls of thin cylindrical shells having freely supported ends[J].Proc Royal Soc London,Ser A,1949,197(1049): 238-256. doi: 10.1098/rspa.1949.0061
    [6] Makino A,Araki N,Kitajima H,et al.Transient temperature response of functionally gradient material subjected to partial step-wise heating[J].Trans Japan Soc Mech Engg,Ser B,1994,60:4200-4006. doi: 10.1299/kikaib.60.4200
    [7] Koizumi M. The concept of FGM[J].Ceramic Transactions:Functionally Gradient Material,1993,34:3-10.
    [8] Loy C T,Lam K Y,Reddy J N. Vibration of functionally graded cylindrical shells[J].International Journal of Mechanical Sciences,1999,41(3):309-324. doi: 10.1016/S0020-7403(98)00054-X
    [9] Pradhan S C,Loy C T,Lam K Y,et al.Vibration characteristics of functionally graded cylindrical shells under various boundary conditions[J].Appl Acoust,2000,61(1):111-129. doi: 10.1016/S0003-682X(99)00063-8
    [10] Ying J,Lu C F,Chen W Q. Two dimentional elasticity solutions for functionally graded beams resting on elastic foundations[J].Composite Structures,2008,84(3):209-219. doi: 10.1016/j.compstruct.2007.07.004
    [11] Sheng G G,Wang X. Thermal vibration,buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium[J].Journal of Reinforced Plastics and Composites,2007,27(2):117-134. doi: 10.1177/0731684407082627
    [12] LI Xiang-yu,DING Hao-jiang,CHEN Wei-qiu.Pure bending of simply supported circular plate of transversely isotropic functionally graded material[J].Journal of Zhejiang University Science A,2006,7(8):1324-1328. doi: 10.1631/jzus.2006.A1324
    [13] Chen W Q,Bian Z G,Ding H J. Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells[J].Journal of Mechanical Sciences,2004,46(1):159-171. doi: 10.1016/j.ijmecsci.2003.12.005
    [14] Najafizadeh M M,Isvandzibaei M R. Vibration of functionally graded cylindrical shells based on higher order shear deformation plate theory with ring support[J].Acta Mechanica,2007,191(1/2):75-91. doi: 10.1007/s00707-006-0438-0
    [15] Arshad S H,Naeem M N,Sultana N. Frequency analysis of functionally graded material cylindrical shells with various volume fraction laws[J].Proc IMechE Part C:Journal of Mechanical Engineering Science,2007,221(12):1483-1495. doi: 10.1243/09544062JMES738
    [16] Sewall J L,Naumann E C. An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners[R]. NASA TND-4705,1968.
    [17] Sharma C B,Johns D J. Vibration characteristics of a clamped-free and clamped-ring-stiffened circular cylindrical shell[J].Journal of Sound and Vibration,1971,14(4):459-474. doi: 10.1016/0022-460X(71)90575-X
    [18] Messina A,Soldatos K P. Ritz-type dynamic analysis of cross-ply laminated circular cylinders subjected to different boundary conditions[J].Journal of Sound and Vibration,1999,227(4):749-768. doi: 10.1006/jsvi.1999.2347
    [19] Soldatos K P,Messina A. Vibration studies of cross-ply laminated shear deformable circular cylinders on the basis of orthogonal polynomials[J].Journal of Sound and Vibration,1998,218(2):219-243. doi: 10.1006/jsvi.1998.1769
    [20] Wang C M,Swaddiwudhipong S,Tian J. Ritz method for vibration analysis of cylindrical shells with ring stiffeners[J].Journal of Engineering Mechanics,1997,123(2):134-142. doi: 10.1061/(ASCE)0733-9399(1997)123:2(134)
    [21] Naeem M N,Sharma C B. Prediction of natural frequencies for thin circular cylindrical shells[J].Proc IMechE Part C:Journal of Mechanical Engineering Science,2000,(10):1313-1328.
    [22] Chung H. Free vibration analysis of circular cylindrical shells[J].Journal of Sound and Vibration,1981,74(3):331-350. doi: 10.1016/0022-460X(81)90303-5
    [23] Goncalves P B,Ramos N R S S. Numerical method for vibration analysis of cylindrical shells[J].Journal of Engineering Mechanics,1997,123(6):544-550. doi: 10.1061/(ASCE)0733-9399(1997)123:6(544)
  • 加载中
计量
  • 文章访问数:  1839
  • HTML全文浏览量:  174
  • PDF下载量:  932
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-09
  • 修回日期:  2009-01-03
  • 刊出日期:  2009-05-15

目录

    /

    返回文章
    返回