A Mixed Newton-Tikhonov Method for Nonlinear Ⅲ-Posed Problems
-
摘要: 鉴于Newton型方法在实际计算中计算量可能非常大,因此提出了一种一步Newton结合若干步简化Newton的混合Newton-Tikhonov方法,并且在一定条件下证明了该方法的收敛性和稳定性.数值试验表明,在减少计算量方面该方法相对于经典的Newton方法有明显的改善.
-
关键词:
- 非线性不适定问题 /
- 热传导反问题 /
- 混合Newton-Tikhonov方法 /
- 收敛性 /
- 稳定性
Abstract: Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems and attract extensive attention of people.However,the computational cost of Newton type methods may be very large because of the complexity of practical problems.A mixed NewtonTikhonov method,i.e.,one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method was proposed.The convergence and stability of this method were proved under some conditions.Numerical experiments show that the new method has obvious improvement over the classical Newton method in the reduction of the computational cost. -
[1] Hanke M.A regularization Levenberg-Marquardt scheme,with application to inverse groundwater filtration problems[J].Inverse Problems,1997,13(1):79-95. doi: 10.1088/0266-5611/13/1/007 [2] Engl H W,Hanke M,Neubauer A.Regularization of Inverse Problem[M].Dordrecht:Kluwer Academic,1996. [3] Bakushinskii A B,Kokurin M Y.Iterative Methods for Approximate Solution of Inverse Problems[M].Dordrecht: Springer,2004. [4] Kaltenbacher B,Neubauer A,Scherzer O.Iterative Regularization Methods for Nonlinear Ill-Posed Problems[M].Walter de Gruyter,2008. [5] Jin Q N.On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems[J].Math Comp,2000,69(232):1603-1623. doi: 10.1090/S0025-5718-00-01199-6 [6] Jin Q N.A convergence analysis of the iteratively regularized Gauss-Newton method under the lipschitz condition[J].Inverse Problems,2008,24(4):1-16. [7] Hanke M,Neubauer A,Scherzer O.A convergerce analysis of the Landweber iteration for nonlinear ill-posed problems[J].Numerical Mathematics,1995,72(11):21-37. doi: 10.1007/s002110050158 [8] Deuflhard P,Engl H W,Scherzer O.A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions[J].Inverse Problems,1998,14(5):1081-1106. doi: 10.1088/0266-5611/14/5/002 [9] Deuflhard P.Newton Method for Nonlinear Problems:Affine Invariance and Adaptive Algorithms[M].Berlin Heidelberg:Springer-Verlag,2004. [10] 贺国强,孟泽红.求解热传导反问题的一种正则化Newton型迭代法[J].应用数学和力学,2007,28(4):479-486.
计量
- 文章访问数: 2484
- HTML全文浏览量: 191
- PDF下载量: 908
- 被引次数: 0