Parametric Resonances of Convection Belts System Analysis
-
摘要: 基于Coriolis加速度和Lagrange应力公式,利用Newton定律得到了运动带的横向振动运动方程.运用多尺度法得到了传送带系统主参数共振的近似解.分析了调谐参数、带的横截面积、黏弹性参数、轴向速度不仅影响非平凡稳态响应的幅值,并且影响其存在区域,揭示了一些新的动力学现象.Abstract: Based on Coriolis acceleration and Lagrangian strain formula,the transverse vibration sys-tem of convection belts equation generalized was derived by Newton.s second law .The method of multiple scales was applied directly to the governing equations,and approximate solution of primary parameter resonance of the system was obtained.The detuning parameter,cros-s section area,elastic and viscoelastic parameters,and an axial moving speed have a significant effect on the amplitudes of steady-state response and their existence boundaries.Some new dynamical phenomena were re-vealed.
-
[1] Abrate A S. Vibration of belts and belt drives[J].Mechanism and Machine Theory,1992,27(6):645-659. doi: 10.1016/0094-114X(92)90064-O [2] Moon J,Wickert J A. Non-linear vibration of power transmission belts[J].Journal of Sound and Vibration,1997,200(4):419-431. doi: 10.1006/jsvi.1996.0709 [3] Pellicano F,Freglent A,Bertuzzi A,et al.Primary and parametric non-linear resonances of power transmission belt: experimental and theoretical analysis[J].Journal of Sound and Vibration,2001,244(4):669-684. doi: 10.1006/jsvi.2000.3488 [4] Zhang L, Zu J W. Non-linear vibrations of viscoelastic moving belts—part Ⅰ: free vibration analysis[J].Journal of Sound and Vibration,1998,216(1):75-91. doi: 10.1006/jsvi.1998.1688 [5] Zhang L, Zu J W. Non-linear vibrations of viscoelastic moving belts—part Ⅱ: forced vibration analysis[J].Journal of Sound and Vibration,1998,216(1):93-105. doi: 10.1006/jsvi.1998.1689 [6] Zhang L, Zu J W. Non-linear vibrations of parametrically excited viscoelastic moving belts—part I: dynamic response[J].Journal of Applied Mechanics,1999,66(2):396-402. doi: 10.1115/1.2791062 [7] Zhang L, Zu J W. Non-linear vibrations of parametrically excited viscoelastic moving belts—part Ⅱ: stability analysis[J].Journal of Applied Mechanics, 1999,66(2):403-409. doi: 10.1115/1.2791063 [8] Nayfeh A H,Mook D T.Nonlinear Oscillation[M].New York:Wiley-Interscience,1979. [9] CHEN Li-qun. Analysis and control of transverse vibrations of axially moving strings[J].ASME Applied Mechanics Reviews,2005,58(2):91-116. doi: 10.1115/1.1849169 [10] CHEN Li-qun. Principal parametric resonance of axially accelerating viscoelastic strings with an integral constitutive law[J].Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2005,461(2061):2701-2720. doi: 10.1098/rspa.2005.1471 [11] CHEN Li-qun, Zu Jean W, WU Jun,et al. Transverse vibrations of an axially accelerating viscoelastic string with geometric nonlinearity[J].Journal of Engineering Mathematics,2004,48(2):172-182. [12] 吴俊,陈立群. 轴向变速运动弦线的非线性振动的稳态响应及其稳定性[J].应用数学和力学,2004,25(9):917-926. [13] Wickert J A, Mote Jr C D. Classical vibration analysis of axially moving continua[J]. Journal of Applied Mechanics,1990,57(3):738-743. doi: 10.1115/1.2897085
计量
- 文章访问数: 1616
- HTML全文浏览量: 138
- PDF下载量: 826
- 被引次数: 0