留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体介质中微粒的分离-混合方程的推导

唐纳德·O·贝松

唐纳德·O·贝松. 流体介质中微粒的分离-混合方程的推导[J]. 应用数学和力学, 2009, 30(6): 713-718. doi: 10.3879/j.issn.1000-0887.2009.06.010
引用本文: 唐纳德·O·贝松. 流体介质中微粒的分离-混合方程的推导[J]. 应用数学和力学, 2009, 30(6): 713-718. doi: 10.3879/j.issn.1000-0887.2009.06.010
Donald O. Besong. Derivation of a Segregation-Mixing Equation for Particles in a Fluid Medium[J]. Applied Mathematics and Mechanics, 2009, 30(6): 713-718. doi: 10.3879/j.issn.1000-0887.2009.06.010
Citation: Donald O. Besong. Derivation of a Segregation-Mixing Equation for Particles in a Fluid Medium[J]. Applied Mathematics and Mechanics, 2009, 30(6): 713-718. doi: 10.3879/j.issn.1000-0887.2009.06.010

流体介质中微粒的分离-混合方程的推导

doi: 10.3879/j.issn.1000-0887.2009.06.010
详细信息
  • 中图分类号: O359

Derivation of a Segregation-Mixing Equation for Particles in a Fluid Medium

  • 摘要: 主要目的是从基本原理(即,基本的物理)出发,推导出流体中纤细的、单个分散微粒的分离-混合方程的重力项.推出的微粒重力驱动通量,直接导致Richardson-Zaki相互关系式的最简单情况.仅仅依靠推导,自然地引出由微粒和流体的物理参数表达的Stokes速度.从基本物理原理出发的推导在以前的文献中还没有出现过.它可应用于低浓度的纤细微粒.
  • [1] Smallwood R H, Tindale W B,Trowbridge E A.The physics of red cell sedimentation[J].Phys Med Biol,1985,30(2):125-137. doi: 10.1088/0031-9155/30/2/002
    [2] Dolgunin V N, Ukolov A A.Segregation modeling of particle rapid gravity flow[J].Powder Technol,1995,83(2):95-103. doi: 10.1016/0032-5910(94)02954-M
    [3] Batchelor G K.Sedimentation in a dilute dispersion of spheres[J].J Fluid Mech,1972,52(2):245-268. doi: 10.1017/S0022112072001399
    [4] Batchelor G K.Sedimentation in a dilute polydisperse system of interacting spheres—part 1:general theory[J].J Fluid Mech,2006,119:379-408.
    [5] Masliyah J H.Hindered settling in a multiple-species particle system[J].Chem Eng Sci,1979,34:1166-1168. doi: 10.1016/0009-2509(79)85026-5
    [6] Kynch G J.A theory of sedimentation[J].Trans Faraday Soc,1952,48:166-176. doi: 10.1039/tf9524800166
    [7] Shojaei A,Arefinia R.Analysis of the sedimentation process in reactive polymeric suspensions[J].Chem Eng Sci,2006,61(23):7565-7578. doi: 10.1016/j.ces.2006.08.050
    [8] Garrido P, Bürger R, Concha F.Settling velocities of particulate systems—11:Comparison of the phenomenological sedimentation-consolidation model with published experimental results[J].Int J Miner Process,2000,60(3/4): 213-227. doi: 10.1016/S0301-7516(00)00014-4
    [9] Bürger R, Damasceno J J R,Karlsen K H.A mathematical model for batch and continuous thickening of flocculated suspensions in vessels with varying cross-section[J].Int J Miner Process,2004,73(2/4):183-208. doi: 10.1016/S0301-7516(03)00073-5
    [10] Richardson J F,Zaki W N.Sedimentation and fluidization—part Ⅰ[J].Chem Eng Res Des,1954,32:35-53.
    [11] Gray J,Chugunov V A.Particle-size segregation and diffusive remixing in shallow granular avalanches[J].J Fluid Mech,2006,569: 365-398. doi: 10.1017/S0022112006002977
    [12] Savage S B,Lun C K K.Particle size segregation in inclined chute flow of dry cohesionless granular solids[J].J Fluid Mech,1988,189: 311-335. doi: 10.1017/S002211208800103X
    [13] Carslaw H S,Jaeger J C.Conduction of Heat in Solids[M].Oxford:Clarenden Press,1959.
    [14] Mazo R M.Brownian Motion: Fluctuations, Dynamics, and Applications[M].Oxford:Oxford University Press,2002.
    [15] Nelson E.Dynamical Theories of Brownian Motion[M].Princeton, NJ:Princeton University Press,1967.
    [16] Firoozabadi A.Thermodynamics of Hydrocarbon Reservoirs[M].McGraw-Hill,1999.
    [17] Boyd C E.Water Quality: An Introduction[M].Kluwer Academic Pub,2000.
    [18] Yoo K H,Boyd C E.Hydrology and Water Supply for Pond Aquaculture[M].New York,London:Springer,1994.
    [19] Bürger R, García A, Karlsen K H,et al.A kinematic model of continuous separation and classification of polydisperse suspensions[J].Comput Chem Eng,2008,32(6):1173-1194. doi: 10.1016/j.compchemeng.2007.04.019
  • 加载中
计量
  • 文章访问数:  1282
  • HTML全文浏览量:  81
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-23
  • 修回日期:  2009-03-02
  • 刊出日期:  2009-06-15

目录

    /

    返回文章
    返回