留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔固体充满黏性流体时的边界条件

M·D·夏玛

M·D·夏玛. 多孔固体充满黏性流体时的边界条件[J]. 应用数学和力学, 2009, 30(7): 766-776. doi: 10.3879/j.issn.1000-0887.2009.07.002
引用本文: M·D·夏玛. 多孔固体充满黏性流体时的边界条件[J]. 应用数学和力学, 2009, 30(7): 766-776. doi: 10.3879/j.issn.1000-0887.2009.07.002
M. D. Sharma. Boundary Conditions for Porous Solids Saturated With Viscous Fluid[J]. Applied Mathematics and Mechanics, 2009, 30(7): 766-776. doi: 10.3879/j.issn.1000-0887.2009.07.002
Citation: M. D. Sharma. Boundary Conditions for Porous Solids Saturated With Viscous Fluid[J]. Applied Mathematics and Mechanics, 2009, 30(7): 766-776. doi: 10.3879/j.issn.1000-0887.2009.07.002

多孔固体充满黏性流体时的边界条件

doi: 10.3879/j.issn.1000-0887.2009.07.002
详细信息
  • 中图分类号: O347.4+1;O357.3

Boundary Conditions for Porous Solids Saturated With Viscous Fluid

  • 摘要: 基于物理学基本原理和能量守恒定律的精确检查,导出充满黏性流体多孔固体边界呈连续性要求的边界条件.当孔隙流体具有黏性时,多孔弹性固体就是一个耗散的充满黏性流体的多空固体.孔隙流体的黏性造成的耗散应力准确地表达了边界条件.边界上两种固体连接的不完全,导致孔隙流体的流出,多孔骨料两边微粒运动的不平衡.导出多孔-多孔固体界面孔隙局部连接时的数学模型.在该界面上,滑移的松-紧,以及孔隙开-合,能造成一部分应变能的耗散.数值结果表明,在水和饱和油砂岩之间的界面上,修正的边界条件将影响各向同性多孔介质中折射波的能量.
  • [1] Biot M A. The theory of propagation of elastic waves in a fluid-saturated porous solid—Ⅰ:low~frequency range;Ⅱ:higher frequency range[J].J Acoust Soc Am,1956,28(2):168-191. doi: 10.1121/1.1908239
    [2] Biot M A. Mechanics of deformation and acoustic propagation in porous media[J].J Appl Phys,1962,33(4):1482-1498. doi: 10.1063/1.1728759
    [3] Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J].J Acoust Soc Am,1962,34(9A):1254-1264. doi: 10.1121/1.1918315
    [4] Deresiewicz H, Skalak R. On uniqueness in dynamic poroelasticity[J].Bull Seism Soc Am,1963,53(4):793-799.
    [5] Dutta N C, Ode H. Seismic reflections from a gas-water contact[J].Geophysics,1983,48(2):148-162. doi: 10.1190/1.1441454
    [6] Lovera O M. Boundary conditions for a fluid-saturated porous solid[J].Geophysics,1987,52(2):174-178. doi: 10.1190/1.1442292
    [7] De La Cruz V, Spanos T J T.Seismic boundary conditions for porous media[J].J Geophys Res, 1989,94(B3):3025-3029. doi: 10.1029/JB094iB03p03025
    [8] Sharma M D, Saini T N. Pore alignment between two dissimilar saturated poroelastic media:reflection and refraction at the interface[J].Int J Solids Struct,1992,29(11):1361-1377. doi: 10.1016/0020-7683(92)90084-7
    [9] Gurevich B, Schoenberg M. Interface conditions for Biot′s equations of poroelasticity[J].J Acoust Soc Am,1999,105(5):2585-2589. doi: 10.1121/1.426874
    [10] Denneman A I M, Drijkoningen G G, Smeulders D M J,et al.Reflection and transmission of waves at a fluid/porous medium interface[J].Geophysics,2002,67(1):282-291. doi: 10.1190/1.1451800
    [11] Auriault J L. Dynamic behavior of a porous medium saturated by a Newtonian fluid[J]. Int J Engng Sci,1980,18(6):775-785. doi: 10.1016/0020-7225(80)90025-7
    [12] Burridge R, Keller J B. Poroelasticity equations derived from microstructure[J].J Acoust Soc Am,1981,70(4):1140-1147. doi: 10.1121/1.386945
    [13] Pride S R, Gangi A F, Morgan F D. Deriving the equations of motion for porous isotropic media[J].J Acoust Soc Am,1992,92(6):3278-3290. doi: 10.1121/1.404178
    [14] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filled porous solid—Ⅲ:reflection of plane waves at a free plane boundary (general case)[J].Bull Seism Soc Am,1962,52(3):595-625.
    [15] Chen J. Time domain fundamental solution to Biot′s complete equations of dynamic poroelasticity—part Ⅰ:two-dimensional solution[J].Int J Solids Struct,1994,31(10):1447-1490. doi: 10.1016/0020-7683(94)90186-4
    [16] Sharma M D. 3-D wave propagation in a general anisotropic poroelastic medium:reflection and refraction at an interface with fluid[J].Geophys J Int,2004,157(2):947-957. doi: 10.1111/j.1365-246X.2004.02226.x
    [17] Sharma M D. Wave propagation in a general anisotropic poroelastic medium with anisotropic permeability:phase velocity and attenuation[J].Int J Solids Struct,2004,41(16/17):4587-4597. doi: 10.1016/j.ijsolstr.2004.02.066
    [18] Morse P M, Feshbach H.Methods of Theoretical Physics[M].New York:McGraw-Hill, 1953.
    [19] Vashisth A K, Sharma M D, Gogna M L. Reflection and transmission of elastic waves at a loosely bonded interface between an elastic solid and liquid-saturated porous solid[J]. Geophys J Int,1991,105(3):601-617. doi: 10.1111/j.1365-246X.1991.tb00799.x
    [20] Borcherdt R D. Reflection-refraction of type-Ⅱ S waves in elastic and inelastic media[J].Bull Seism Soc Am,1977,67:43-67.
    [21] Rasolofosaon P N J, Zinszner B E. Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks[J].Geophysics,2002,67(1):230-240. doi: 10.1190/1.1451647
  • 加载中
计量
  • 文章访问数:  1725
  • HTML全文浏览量:  152
  • PDF下载量:  749
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-07-29
  • 修回日期:  2009-04-28
  • 刊出日期:  2009-07-15

目录

    /

    返回文章
    返回