留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面Stokes流动中改良的空间衰减限

J·C·宋

J·C·宋. 平面Stokes流动中改良的空间衰减限[J]. 应用数学和力学, 2009, 30(7): 777-782. doi: 10.3879/j.issn.1000-0887.2009.07.003
引用本文: J·C·宋. 平面Stokes流动中改良的空间衰减限[J]. 应用数学和力学, 2009, 30(7): 777-782. doi: 10.3879/j.issn.1000-0887.2009.07.003
J. C. Song. Improved Spatial Decay Bounds in the Plane Stokes Flow[J]. Applied Mathematics and Mechanics, 2009, 30(7): 777-782. doi: 10.3879/j.issn.1000-0887.2009.07.003
Citation: J. C. Song. Improved Spatial Decay Bounds in the Plane Stokes Flow[J]. Applied Mathematics and Mechanics, 2009, 30(7): 777-782. doi: 10.3879/j.issn.1000-0887.2009.07.003

平面Stokes流动中改良的空间衰减限

doi: 10.3879/j.issn.1000-0887.2009.07.003
基金项目: 韩国国家研究基金会资助项目(KRF-2008-521-C00021)
详细信息
  • 中图分类号: O357.1

Improved Spatial Decay Bounds in the Plane Stokes Flow

  • 摘要: 研究半无限通道中,时变粘性流体Stokes流动时的空间衰减限和衰减率.得到了一个近乎最优的衰减率,且与Reynolds数无关.修正了Lin和Song的分析,选用更佳的任意常数得到衰减率为1.328,明显地改进了Lin得到结果0.91.
  • [1] LIN Chang-hao. Spatial decay estimates and energy bounds for the Stokes flow equation[J].Stability and Appl Anal of Continuous Media,1992,2:249-264.
    [2] Knowles J K. An energy estimate for the biharmonic equation and its application to Saint-Venant’s principle in plane elastostatics[J].Indian J Pure Appl Math,1983,14(7):791-805.
    [3] Horgan C O,Knowles J K. Recent developments concerning Saint-Venant’s principle[J].Adv Appl Mech,1983,23:179-269. doi: 10.1016/S0065-2156(08)70244-8
    [4] Horgan C O. Recent developments concerning Saint-Venant’s principle: an update[J]. Appl Mech Rev,1989,42:295-303. doi: 10.1115/1.3152414
    [5] Horgan C O. Recent developments concerning Saint-Venant’s principle: a second update [J].Appl Mech Rev,1996,49(10S):101-111. doi: 10.1115/1.3101961
    [6] Horgan C O. Plane entry flows and energy estimates for the Navier-Stokes equations[J].Arch Rat Mech Anal,1978,68(4):359-381.
    [7] Horgan C O,Wheeler L T.Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow[J].SIAM J Appl Math,1978,35(1):97-116. doi: 10.1137/0135008
    [8] Ames K A,Payne L E,Schaefer P W. Spatial decay estimates in time-dependent Stokes flow[J].SIAM J Math Anal,1993,24(6): 1395-1413. doi: 10.1137/0524081
    [9] LIN Chang-hao,Payne L P. Spatial decay bounds in the channel flow of an incompressible viscous fluid[J].Math Models Meth Appl Sci,2004,14(6):795-818. doi: 10.1142/S0218202504003453
    [10] LIN Chang-hao,Payne L P.Spatial decay bounds in time-dependent pipe flow of an incompressible viscous fluid[J].SIAM J Appl Math,2004,65(2):458-474. doi: 10.1137/040606326
    [11] Horgan C O. Decay estimates for the biharmonic equation with applications to Saint-Venant’s principle in plane elasticity and Stokes flow[J].Quart Appl Math,1989,42(1):147-157.
    [12] Song J C. Improved decay estimates in time-dependent Stokes flow[J].J Math Anal Appl,2003,288(2):505-517. doi: 10.1016/j.jmaa.2003.09.007
    [13] Vafeades P,Horgan C O.Exponential decay estimates for solutions of the von Kármán equations on a semi-infinite strip[J].Arch Rat Mech Anal,1988,104(1):1-25. doi: 10.1007/BF00256930
  • 加载中
计量
  • 文章访问数:  1081
  • HTML全文浏览量:  71
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-03
  • 修回日期:  2009-05-04
  • 刊出日期:  2009-07-15

目录

    /

    返回文章
    返回