[1] |
LIN Chang-hao. Spatial decay estimates and energy bounds for the Stokes flow equation[J].Stability and Appl Anal of Continuous Media,1992,2:249-264.
|
[2] |
Knowles J K. An energy estimate for the biharmonic equation and its application to Saint-Venant’s principle in plane elastostatics[J].Indian J Pure Appl Math,1983,14(7):791-805.
|
[3] |
Horgan C O,Knowles J K. Recent developments concerning Saint-Venant’s principle[J].Adv Appl Mech,1983,23:179-269. doi: 10.1016/S0065-2156(08)70244-8
|
[4] |
Horgan C O. Recent developments concerning Saint-Venant’s principle: an update[J]. Appl Mech Rev,1989,42:295-303. doi: 10.1115/1.3152414
|
[5] |
Horgan C O. Recent developments concerning Saint-Venant’s principle: a second update [J].Appl Mech Rev,1996,49(10S):101-111. doi: 10.1115/1.3101961
|
[6] |
Horgan C O. Plane entry flows and energy estimates for the Navier-Stokes equations[J].Arch Rat Mech Anal,1978,68(4):359-381.
|
[7] |
Horgan C O,Wheeler L T.Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow[J].SIAM J Appl Math,1978,35(1):97-116. doi: 10.1137/0135008
|
[8] |
Ames K A,Payne L E,Schaefer P W. Spatial decay estimates in time-dependent Stokes flow[J].SIAM J Math Anal,1993,24(6): 1395-1413. doi: 10.1137/0524081
|
[9] |
LIN Chang-hao,Payne L P. Spatial decay bounds in the channel flow of an incompressible viscous fluid[J].Math Models Meth Appl Sci,2004,14(6):795-818. doi: 10.1142/S0218202504003453
|
[10] |
LIN Chang-hao,Payne L P.Spatial decay bounds in time-dependent pipe flow of an incompressible viscous fluid[J].SIAM J Appl Math,2004,65(2):458-474. doi: 10.1137/040606326
|
[11] |
Horgan C O. Decay estimates for the biharmonic equation with applications to Saint-Venant’s principle in plane elasticity and Stokes flow[J].Quart Appl Math,1989,42(1):147-157.
|
[12] |
Song J C. Improved decay estimates in time-dependent Stokes flow[J].J Math Anal Appl,2003,288(2):505-517. doi: 10.1016/j.jmaa.2003.09.007
|
[13] |
Vafeades P,Horgan C O.Exponential decay estimates for solutions of the von Kármán equations on a semi-infinite strip[J].Arch Rat Mech Anal,1988,104(1):1-25. doi: 10.1007/BF00256930
|