[1] |
Brezzi F,Fortin M.Mixed and Hybrid Finite Element Methods[M].Springer Series in Computational Mathematics.Vol 15.New York: Springer,1991.
|
[2] |
Girault V,Raviart P.Finite Element Methods for the Navier-Stokes Equations[M].Berlin: Springer,1986.
|
[3] |
Zhou T X,Feng M F.A least square Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J].Mathematics of Computation,1993,66(202):531-543.
|
[4] |
Douglas J,Wang J. An absolutely stabilized finite element method for the Stokes problem[J].Mathematics of Computation,1989,52(186):495-508. doi: 10.1090/S0025-5718-1989-0958871-X
|
[5] |
Bochev P B,Dohrman C R,Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J].SIAM Journal on Numerical Analysis,2006,44(1):82-101. doi: 10.1137/S0036142905444482
|
[6] |
Li J,He Y N.A stabilized finite element method based on two local Guass integrations for the Stokes equations[J].Journal of Computational and Applied Mathematics,2008,214(1):58-65. doi: 10.1016/j.cam.2007.02.015
|
[7] |
Dohrman C R,Bochev P B.A stabilized finite element method for the Stokes problem based on polynomial pressure projections[J].International Journal for Numerical Methods in Fluids,2004,46(2): 183-201. doi: 10.1002/fld.752
|
[8] |
He Y N,Li J.A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J].Applied Numerical Mathematics,2008,58(10): 1503-1514. doi: 10.1016/j.apnum.2007.08.005
|
[9] |
Li J,He Y N,Chen Z X. A new stabilized finite element method for the transient Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,2007,197(1/4):22-35. doi: 10.1016/j.cma.2007.06.029
|
[10] |
Heywood J G,Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes problem—part Ⅳ:error estimates for second-order error estimates for spatial discretization[J].SIAM Journal on Numerical Analysis,1990,27(2):353-384. doi: 10.1137/0727022
|
[11] |
Girault V,Raviart P A.Finite Element Approximation of the Navier-Stokes Equations[M].Lecture Notes in Math.Vol 749.Berlin: Springer, 1974.
|
[12] |
He Y N. Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations[J].SIAM Journal on Numerical Analysis,2003,41(4):1263-1285. doi: 10.1137/S0036142901385659
|
[13] |
Burman E.Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem[J].Numerical Methods for Partial Differential Equations,2008,24(1): 127-143. doi: 10.1002/num.20243
|
[14] |
Heywood J G,Rannacher R.Finite element approximation of the nonstationary Navier-Stokes problem—Ⅰ:regularity of solutions and second-order error estimates for spatial discretization[J].SIAM Journal on Numerical Analysis,1982,19(2):275-311. doi: 10.1137/0719018
|