留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可靠性分析中的最小二乘支持向量机分类方法

郭秩维 白广忱

郭秩维, 白广忱. 可靠性分析中的最小二乘支持向量机分类方法[J]. 应用数学和力学, 2009, 30(7): 799-810. doi: 10.3879/j.issn.1000-0887.2009.07.005
引用本文: 郭秩维, 白广忱. 可靠性分析中的最小二乘支持向量机分类方法[J]. 应用数学和力学, 2009, 30(7): 799-810. doi: 10.3879/j.issn.1000-0887.2009.07.005
GUO Zhi-wei, BAI Guang-chen. Classification Using Least Squares Support Vector Machine for Reliability Analysis[J]. Applied Mathematics and Mechanics, 2009, 30(7): 799-810. doi: 10.3879/j.issn.1000-0887.2009.07.005
Citation: GUO Zhi-wei, BAI Guang-chen. Classification Using Least Squares Support Vector Machine for Reliability Analysis[J]. Applied Mathematics and Mechanics, 2009, 30(7): 799-810. doi: 10.3879/j.issn.1000-0887.2009.07.005

可靠性分析中的最小二乘支持向量机分类方法

doi: 10.3879/j.issn.1000-0887.2009.07.005
基金项目: 国家高技术研究发展计划(863)资助项目(2006AA04Z405)
详细信息
    作者简介:

    郭秩维(1981- ),男,山东人,博士生(联系人.Tel:+86-10-83929385;E-mail:guozhiwei-guoshuai@vip.sina.com).

  • 中图分类号: TB114.3

Classification Using Least Squares Support Vector Machine for Reliability Analysis

  • 摘要: 为了提高支持向量分类机在处理大样本可靠性问题时的计算效率,将最小二乘支持向量分类机引入到可靠性分析中,使得支持向量机中的二次规划问题转化为求解线性方程组问题,减少了计算量.数值算例表明:基于最小二乘支持向量分类机的可靠性方法与基于支持向量分类机的可靠性方法具有一样的计算精度,而且前者的计算效率明显优于后者.
  • [1] Gomes H M,Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J].Structural Safety,2004,26(1):49-67. doi: 10.1016/S0167-4730(03)00022-5
    [2] Lee S H,Kwak B M. Response surface augmented moment method for efficient reliability analysis[J].Structural Safety,2006,28(3):261-272. doi: 10.1016/j.strusafe.2005.08.003
    [3] Bucher C G,Bourgund U. A fast and efficient response surface approach for structural reliability problems[J].Structural Safety,1990,7(1):57-66. doi: 10.1016/0167-4730(90)90012-E
    [4] Rajashekhar M R,Ellingwood B R. A new look at the response surface approach for reliability analysis[J].Structural Safety,1993,12(3):205-220. doi: 10.1016/0167-4730(93)90003-J
    [5] Kim S H,Na S W. Response surface method using vector projected sampling points[J].Structural Safety,1997,19(1):3-19. doi: 10.1016/S0167-4730(96)00037-9
    [6] Guan H L,Melchers R E. Effect of response surface parameter variation on structural reliability estimates[J].Structural Safety,2001,23(4):429-444. doi: 10.1016/S0167-4730(02)00013-9
    [7] Schueremans L,Gemert D V. Benefit of splines and neural networks in simulation based structural reliability analysis[J].Structural Safety,2005,27(3):246-261. doi: 10.1016/j.strusafe.2004.11.001
    [8] Hurtado J E,Alvarez D A. Neural-network-based reliability analysis: a comparative study [J].Computer Methods in Applied Mechanics and Engineering,2001,191(1/2):113-132. doi: 10.1016/S0045-7825(01)00248-1
    [9] Papadrakakis M,Lagaros N D.Reliability-based structural optimization using neural networks and Monte Carlo simulation[J].Computer Methods in Applied Mechanics and Engineering,2002,191(32): 3491-3507. doi: 10.1016/S0045-7825(02)00287-6
    [10] Deng J, Gu D S, Li X B,et al. Structural reliability analysis for implicit performance functions using artificial neural network[J].Structural Safety,2005,27(1):25-48. doi: 10.1016/j.strusafe.2004.03.004
    [11] Elhewy A H, Mesbahi M,Pu Y. Reliability analysis of structures using neural network method[J].Probabilistic Engineering Mechanics,2006,21(1):44-53. doi: 10.1016/j.probengmech.2005.07.002
    [12] Cheng J,Li Q S. Reliability analysis of structures using artificial neural network based genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering,2008,197(45/48): 3742-3750. doi: 10.1016/j.cma.2008.02.026
    [13] Cardoso J B, Almeida J R, Dias J M,et al. Structural reliability analysis using Monte Carlo simulation and neural networks[J].Advances in Engineering Software,2008,39(6):505-513. doi: 10.1016/j.advengsoft.2007.03.015
    [14] Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine[J].Reliability Engineering and System Safety,2002,76(3):237-243. doi: 10.1016/S0951-8320(02)00015-7
    [15] Hurtado J E, Alvarez D A. Classification approach for reliability analysis with stochastic finite~element modeling[J].Journal of Structural Engineering,2003,129(8):1141-1149. doi: 10.1061/(ASCE)0733-9445(2003)129:8(1141)
    [16] 李洪双,吕震宙,岳珠峰. 结构可靠性分析的支持向量机方法[J]. 应用数学和力学,2006,27(10):1135-1143.
    [17] Chua K S. Efficient computations for large least square support vector machine classifiers[J].Pattern Recognition Letters,2003,24(1/3):75-80. doi: 10.1016/S0167-8655(02)00190-3
    [18] Vapnik V N.Statistical Learning Theory[M].New York:John Wiley, 1998.
    [19] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J].Neural Processing, Letters,1999,9(3): 293-300. doi: 10.1023/A:1018628609742
  • 加载中
计量
  • 文章访问数:  1736
  • HTML全文浏览量:  167
  • PDF下载量:  747
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-05-19
  • 修回日期:  2009-05-18
  • 刊出日期:  2009-07-15

目录

    /

    返回文章
    返回