留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气体运动论的差分算法对管道流动数值研究

李志辉 毕林 唐志共

李志辉, 毕林, 唐志共. 基于气体运动论的差分算法对管道流动数值研究[J]. 应用数学和力学, 2009, 30(7): 833-846. doi: 10.3879/j.issn.1000-0887.2009.07.008
引用本文: 李志辉, 毕林, 唐志共. 基于气体运动论的差分算法对管道流动数值研究[J]. 应用数学和力学, 2009, 30(7): 833-846. doi: 10.3879/j.issn.1000-0887.2009.07.008
LI Zhi-hui, BI Lin, TANG Zhi-gong. Study of Gas-Kinetic Numerical Schemes for One-and Two-Dimensional Inner Flows[J]. Applied Mathematics and Mechanics, 2009, 30(7): 833-846. doi: 10.3879/j.issn.1000-0887.2009.07.008
Citation: LI Zhi-hui, BI Lin, TANG Zhi-gong. Study of Gas-Kinetic Numerical Schemes for One-and Two-Dimensional Inner Flows[J]. Applied Mathematics and Mechanics, 2009, 30(7): 833-846. doi: 10.3879/j.issn.1000-0887.2009.07.008

基于气体运动论的差分算法对管道流动数值研究

doi: 10.3879/j.issn.1000-0887.2009.07.008
基金项目: 国家自然科学基金资助项目(10621062);总装备部预研基金资助项目(9140A13050207KG29)
详细信息
    作者简介:

    李志辉(1968- ),男,四川眉山人,研究员,博士(联系人.Tel:+86-10-82330957;E-mail:zhli0097@x263.net);毕林(1981- ),男,江西瑞金人,硕士;唐志共(1965- ),男,江苏南通人,研究员,博士.

  • 中图分类号: V211.3;O241.82;O356

Study of Gas-Kinetic Numerical Schemes for One-and Two-Dimensional Inner Flows

  • 摘要: 从分析研究求解Boltzmann模型方程的气体运动论数值计算方法特点出发,设计了几种求解离散速度分布函数不同精度的差分显式与隐式气体运动论数值格式.通过对不同Knudsen数下一维非定常激波管内流动、二维槽道流问题计算研究与应用测试,分析了不同差分格式数值离散效应对计算结果的影响,研究讨论了提高气体运动论数值算法计算效率的途径和差分离散处理所适用的计算准则等问题.
  • [1] Sod G A. A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws[J].Journal of Computational Physics,1978,27(1):1-31. doi: 10.1016/0021-9991(78)90023-2
    [2] Chu C K. Kinetic-theoretic description of the formation of a shock wave[J].Physics of Fluids,1965,8(1):12-22. doi: 10.1063/1.1761077
    [3] Reitz R D. One-dimensional compressible gas dynamics calculations using the Boltzmann equations[J].Journal of Computational Physics,1981,42(1):108-123. doi: 10.1016/0021-9991(81)90235-7
    [4] Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅰ[J].Journal of Computational Physics,1988,77(2):439-471. doi: 10.1016/0021-9991(88)90177-5
    [5] Gorelov S L, Kogan M N. Solution of linear problem of rarefied gas dynamics by the Monte Carlo method[J].Fluid Dynamics,1968,3(2):96-98.
    [6] Huang A B, Hwang P F. Test of statistical models for gases with and without internal energy states[J].Physics of Fluids,1973,16(4):466-575. doi: 10.1063/1.1694368
    [7] Alofs D J, Flagan R C, Springer G S.Density distribution measurements in rarefied gases contained between parallel plates at high temperature differences[J].Physics of Fluids,1971,14(3):529-533. doi: 10.1063/1.1693466
    [8] Tritton D J.Physical Fluid Dynamics[M].Oxford:Oxford University Press, 1988.
    [9] Prendergast K H, Xu K. Numerical hydrodynamics from gas-kinetic theory[J].Journal of Computational Physics,1993,109(1):53-66. doi: 10.1006/jcph.1993.1198
    [10] Yang J Y, Huang J C. Rarefied flow computations using nonlinear model Boltzmann equations[J].Journal of Computational Physics,1995,120(2):323-339. doi: 10.1006/jcph.1995.1168
    [11] Zheng Y, Garcia A L, Alder B J. Comparison of kinetic theory and hydrodynamics for poiseuille flow[J].Journal of Statistical Physics,2002,109(3/4):495-505. doi: 10.1023/A:1020498111819
    [12] Luo L S, Chen H, Chen S,et al.Generalized hydrodynamic transport in lattice gas automata[J].Physical Review A,1991,43(12):7097-7100. doi: 10.1103/PhysRevA.43.7097
    [13] Chen S, Doolen G D. Lattice Boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1):329-364. doi: 10.1146/annurev.fluid.30.1.329
    [14] Sone Y, Takata S, Ohwada T. Numerical analysis of the plane Couette flow of a rarefied gas on the basis of the linearized Boltzmann equation for hard-sphere molecules[J].European Journal of Mechanics-B/Fluids,1990,9(3):449-456.
    [15] Xu K, Li Z H. Microchannel flow in the slip regime:gas-kinetic BGK-Burnett solutions[J].Journal of Fluid Mechanics,2004,513:87-110. doi: 10.1017/S0022112004009826
    [16] 李志辉. 从稀薄流到连续流的气体运动论统一数值算法研究[D].博士论文. 四川绵阳:中国空气动力研究与发展中心研究生部, 2001.
    [17] Li Z H, Zhang H X. Numerical investigation from rarefied flow to continuum by solving the Boltzmann model equation[J].International Journal of Numerical Methods in Fluids,2003,42(4):361-382. doi: 10.1002/fld.517
    [18] Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J].Journal of Computational Physics,2004,193(2):708-738. doi: 10.1016/j.jcp.2003.08.022
    [19] Li Z H, Zhang H X. Gas-kinetic description of shock wave structures by solving Boltzmann model equation[J].International Journal of Computational Fluid Dynamics, 2008,22(9):623-638. doi: 10.1080/10618560802395117
    [20] Zhang H X, Zhuang F G.NND Schemes and Their Applications to Numerical Simulation of Two- and Three-Dimensional Flows[M].In:Hutchinson J W,Wu T Y,Eds.Advances in Applied Mechanics.29.Holland:Academic Press,1992,193-256.
    [21] Shizgal B. A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems[J].Journal of Computational Physics,1981,41(2):309-328. doi: 10.1016/0021-9991(81)90099-1
    [22] Yee H C. Construction of explicit and implicit symmetric TVD schemes and their applications[J].Journal of Computational Physics,1987,68(1):151-179. doi: 10.1016/0021-9991(87)90049-0
    [23] 张涵信, 沈孟育. 计算流体力学――差分方法的原理和应用[M].北京:国防工业出版社, 2003.
    [24] 刘儒勋, 舒其望. 计算流体力学的若干新方法[M].北京:科学出版社,2003.
    [25] Schlichting H.Boundary-Layer Theory[M].Chap XII. New York:McGraw-Hill, 1968.
    [26] Nance R P, Hash D B, Hassan H A. Role of boundary conditions in Monte Carlo simulation of microelectromechanical systems[J].Journal of Thermophysics and Heat Transfer,1998,12(3):447-449. doi: 10.2514/2.6358
  • 加载中
计量
  • 文章访问数:  1680
  • HTML全文浏览量:  91
  • PDF下载量:  1008
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-17
  • 修回日期:  2009-05-27
  • 刊出日期:  2009-07-15

目录

    /

    返回文章
    返回