留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有分布时滞和区间参数的随机系统的p-阶矩指数鲁棒稳定性

苏春华 刘思峰

苏春华, 刘思峰. 具有分布时滞和区间参数的随机系统的p-阶矩指数鲁棒稳定性[J]. 应用数学和力学, 2009, 30(7): 856-864. doi: 10.3879/j.issn.1000-0887.2009.07.010
引用本文: 苏春华, 刘思峰. 具有分布时滞和区间参数的随机系统的p-阶矩指数鲁棒稳定性[J]. 应用数学和力学, 2009, 30(7): 856-864. doi: 10.3879/j.issn.1000-0887.2009.07.010
SU Chun-hua, LIU Si-feng. p-Moment Exponential Robust Stability for Stochastic Systems With Distributed Delays and Interval Parameters[J]. Applied Mathematics and Mechanics, 2009, 30(7): 856-864. doi: 10.3879/j.issn.1000-0887.2009.07.010
Citation: SU Chun-hua, LIU Si-feng. p-Moment Exponential Robust Stability for Stochastic Systems With Distributed Delays and Interval Parameters[J]. Applied Mathematics and Mechanics, 2009, 30(7): 856-864. doi: 10.3879/j.issn.1000-0887.2009.07.010

具有分布时滞和区间参数的随机系统的p-阶矩指数鲁棒稳定性

doi: 10.3879/j.issn.1000-0887.2009.07.010
基金项目: 国家自然科学基金资助项目(70473037);河南省自然科学基金资助项目(0611054400)
详细信息
    作者简介:

    苏春华(1965- ),男,河南上蔡人,讲师,博士(联系人.Tel:+86-376-6390017;E-mail:chslg@tom.com).

  • 中图分类号: O231.3

p-Moment Exponential Robust Stability for Stochastic Systems With Distributed Delays and Interval Parameters

  • 摘要: 研究了一类具有分布时滞和区间参数的随机系统的p-阶矩指数鲁棒稳定性问题.利用Liapunov-Krasovskii泛函、区间矩阵的分解技术及It公式,得到了该系统p-阶矩指数鲁棒稳定的时滞依赖的稳定性判据.通过数值例子说明了所得判据的有效性和实用性.
  • [1] Eurich C W, Thiel A, Fahse L. Distributed delays stabilize ecological feedback systems[J].Physical Review Letters,2005,94(15):158104. doi: 10.1103/PhysRevLett.94.158104
    [2] Wang Z, Liu Y, Fraser K,et al.Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays[J].Physics Letters A,2006,354(4):288-297. doi: 10.1016/j.physleta.2006.01.061
    [3] Su W W, Chen Y M. Global robust stability criteria of stochastic Cohen-Grossberg neural networks with discrete and distributed time-varying delays[J].Communications in Nonlinear Science and Numerical Simulation,doi: 10.1016/j.cnsns.2007.09.001.
    [4] Florchinger P. Stability of some linear stochastic systems with delays[A].In:Proceedings of the 40th IEEE Conference on Decision and Control[C].Orlando, Florida USA:IEEE,2001,4744-4745.
    [5] Verriest E I. Stochastic stability of a class of distributed delay systems[A].In:Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference Seville 2005[C].Spain:IEEE, 2005, 5048-5053.
    [6] Ficak B. Point delay methods applied to the investigation of stability for a class of distributed delay systems[J].Systems & Control Letters,2007,56(3):223-229.
    [7] Mao X, Koroleva N, Rodkina A. Robust stability of uncertain stochastic differential delay equations[J].Systems & Control Letters,1998,35(5):325-336.
    [8] Liao X X, Mao X. Exponential stability of stochastic delay interval systems[J].Systems & Control Letters,2000,40(2):171-181.
    [9] Lu C Y, Su T J, Tsai J S H. On robust stabilization of uncertain stochastic time-delay systems—an LMI-based approach[J].Journal of the Franklin Institute,2005,342(5):473-487. doi: 10.1016/j.jfranklin.2005.01.004
    [10] Chen W H, Guan Z H, Lu X M. Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: an LMI approach[J]. Systems & Control Letters,2005, 54(6):547-555.
    [11] 江明辉,沈轶,廖晓昕.不确定中立型线性随机时滞系统的鲁棒稳定性[J].应用数学和力学,2007,28(6):741-748.
    [12] Mao X.Exponential Stability of Stochastic Differential Delay Equations[M].New York: Marcel Dekker,1994.
  • 加载中
计量
  • 文章访问数:  1382
  • HTML全文浏览量:  166
  • PDF下载量:  1032
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-05-31
  • 修回日期:  2009-05-13
  • 刊出日期:  2009-07-15

目录

    /

    返回文章
    返回