留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有变消耗率的恒化器模型的脉冲扰动与分支

张弘 P·齐奥塞斯库 J·J·涅托 陈兰荪

张弘, P·齐奥塞斯库, J·J·涅托, 陈兰荪. 一类具有变消耗率的恒化器模型的脉冲扰动与分支[J]. 应用数学和力学, 2009, 30(7): 873-882. doi: 10.3879/j.issn.1000-0887.2009.07.012
引用本文: 张弘, P·齐奥塞斯库, J·J·涅托, 陈兰荪. 一类具有变消耗率的恒化器模型的脉冲扰动与分支[J]. 应用数学和力学, 2009, 30(7): 873-882. doi: 10.3879/j.issn.1000-0887.2009.07.012
ZHANG Hong, Paul Georgescu, Juan J. Nieto, CHEN Lan-sun. On the Impulsive Perturbation and Bifurcation of Solutions for a Model of Chemostat With Variable Yield[J]. Applied Mathematics and Mechanics, 2009, 30(7): 873-882. doi: 10.3879/j.issn.1000-0887.2009.07.012
Citation: ZHANG Hong, Paul Georgescu, Juan J. Nieto, CHEN Lan-sun. On the Impulsive Perturbation and Bifurcation of Solutions for a Model of Chemostat With Variable Yield[J]. Applied Mathematics and Mechanics, 2009, 30(7): 873-882. doi: 10.3879/j.issn.1000-0887.2009.07.012

一类具有变消耗率的恒化器模型的脉冲扰动与分支

doi: 10.3879/j.issn.1000-0887.2009.07.012
基金项目: 国家自然科学基金资助项目(10471104);江苏大学高级人才基金项目的资助(08JDG047)
详细信息
    作者简介:

    张弘(1978- ),男,江苏常州人,讲师,博士(联系人.E-mail:cnczzhanghong@163.com;E-mail:hongzhang@ujs.edu.cn).

  • 中图分类号: O175

On the Impulsive Perturbation and Bifurcation of Solutions for a Model of Chemostat With Variable Yield

  • 摘要: 提出和研究了一个具有变消耗率和非同步脉冲的恒化器模型,并且得到了一组像阈值一样的条件来确保系统半平凡周期解的全局渐稳性,系统的持久性以及出现非平凡分支周期解.最后,一些数值模拟体现了该模型的动力学性态.
  • [1] 陈兰荪,陈键.非线性生物动力系统[M].北京:科学出版社,1993.
    [2] Hsu S B,Li C C. A discrete-delayed model with plasmid-bearing,plasmid-free competition in a chemostat[J].Discrete and Continuous Dynamical Systems,Ser B,2005,5(3):699-718. doi: 10.3934/dcdsb.2005.5.699
    [3] Huang X C,Zhu L M. A three dimensional chemostat with quadratic yields[J].J Math Chem,2005,38(4):575-588. doi: 10.1007/s10910-005-6908-0
    [4] Pilyugin S S,Waltman P. Competition in the unstirred chemostat with periodic input and washout[J].SIAM J Appl Math,1999,59(4):1157-1177. doi: 10.1137/S0036139997323954
    [5] Smith R J,Wolkowicz G S K. Analysis of a model of the nutrient driven self-cycling fermentation process[J].Dynamics of Continuous,Discrete and Impulsive Systems,Series B,2004,11(2):239-265.
    [6] Song X Y,Zhao Z. Extinction and permanence of two-nutrient and one-microorganism chemostat model with pulsed input[J].Discrete Dynamics in Nature and Society,2006,2006:1-14.
    [7] Sun S L,Chen L S. Complex dynamics of a chemostat with variable yield and periodically impulsive perturbation on the substrate[J].Journal of Mathematical Chemistry,2008,43(1):338-349. doi: 10.1007/s10910-006-9200-z
    [8] Wu J H,Nie H,Wolkowicz G S K. A mathematical model of competition for two essential resources in the unstirred chemostat[J].SIAM J Appl Math,2004,65(1):209-229. doi: 10.1137/S0036139903423285
    [9] Hoeffken G,Talan D,Larsen L S,et al. Efficacy and safety of sequential moxifloxacin for treatment of community-acquired pneumonia associated with a typical pathogens[J].Eur J Clin Microbiol Infect Dis,2004,23(10):772-775. doi: 10.1007/s10096-004-1214-5
    [10] Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
    [11] Funasaki E,Kot M. Invasion and chaos in a periodically pulsed mass-action chemostat[J].Theor Pop Biol,1994,44(2):203-224.
    [12] Lakmeche A,Arino O. Bifurcation of nontrivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment[J].Dynamics of Continuous,Discrete and Impulsive Systems,2000,7(2):265-287.
    [13] Nieto J J,Rodriguez-Lopez R. Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations[J].J Math Anal Appl,2006,318(2):593-610. doi: 10.1016/j.jmaa.2005.06.014
    [14] Georgescu P,Moro?anu G. Pest regulation by means of impulsive controls[J].Appl Math Comput,2007,190(1):790-803. doi: 10.1016/j.amc.2007.01.079
    [15] Zhang W H,Zhu S Y,Chen H,et al.Efficacy of intravenous moxifloxacin in treating patients with moderate to severe community-acquired pneumonia[J].Chinese J of Infect Chemother,2006,6(5):296-300.
    [16] Georgescu P,Zhang H,Chen L S. Bifurcation of nontrivial periodic solutions for an impulsively controlled pest management model[J].Appl Math Comput,2008,202(2):675-687.
    [17] Chow S N,Hale J.Methods of Bifurcation Theory[M].New York,NY:Springer-Verlag,1982.
  • 加载中
计量
  • 文章访问数:  1661
  • HTML全文浏览量:  107
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-26
  • 修回日期:  2009-06-10
  • 刊出日期:  2009-07-15

目录

    /

    返回文章
    返回