留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带附加噪声的随机广义2DGinzburg-Landau方程的渐进行为

李栋龙 郭柏灵

李栋龙, 郭柏灵. 带附加噪声的随机广义2DGinzburg-Landau方程的渐进行为[J]. 应用数学和力学, 2009, 30(8): 883-894. doi: 10.3879/j.issn.1000-0887.2009.08.001
引用本文: 李栋龙, 郭柏灵. 带附加噪声的随机广义2DGinzburg-Landau方程的渐进行为[J]. 应用数学和力学, 2009, 30(8): 883-894. doi: 10.3879/j.issn.1000-0887.2009.08.001
LI Dong-long, GUO Bo-ling. Asymptotic Behavior of the 2D Generalized Stochastic Ginzburg-Landau Equation With Additive Noise[J]. Applied Mathematics and Mechanics, 2009, 30(8): 883-894. doi: 10.3879/j.issn.1000-0887.2009.08.001
Citation: LI Dong-long, GUO Bo-ling. Asymptotic Behavior of the 2D Generalized Stochastic Ginzburg-Landau Equation With Additive Noise[J]. Applied Mathematics and Mechanics, 2009, 30(8): 883-894. doi: 10.3879/j.issn.1000-0887.2009.08.001

带附加噪声的随机广义2DGinzburg-Landau方程的渐进行为

doi: 10.3879/j.issn.1000-0887.2009.08.001
基金项目: 国家自然科学基金资助项目(10661023);广西省自然科学基金资助项目(0832065);广西优秀人才资助计划资助项目
详细信息
    作者简介:

    李栋龙(1964- ),男,广东人,教授,博士(联系人.E-mail:lidl@21cn.com).

  • 中图分类号: O175

Asymptotic Behavior of the 2D Generalized Stochastic Ginzburg-Landau Equation With Additive Noise

  • 摘要: 考虑带附加噪声的随机广义2D Ginzburg-Landau方程.通过先验估计的方法,随机动力系统的紧性得到证明,进一步验证了该随机动力系统在H10存在随机整体吸引子.
  • [1] Doering C, Gibbon J D, holm D, et al. Low-dimensional behavior in the complex Ginzburg-Landau equation[J].Nonlinearity,1988,1(2):279-309. doi: 10.1088/0951-7715/1/2/001
    [2] Ghidaglia J-M,Héron B.Dimension of the attractor associated to the Ginzburg-Landau equation[J].Physica D,1987,28(3):282-304. doi: 10.1016/0167-2789(87)90020-0
    [3] Bartuccelli M,Constantin P,Doering C,et al.On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation[J].Physica D,1990,44(3):421-444. doi: 10.1016/0167-2789(90)90156-J
    [4] Doering C R, Gibbon J D, Levermore C D. Weak and strong solutions of the complex Ginzburg-Landau equation[J].Physica D,1994,71(3):285-318. doi: 10.1016/0167-2789(94)90150-3
    [5] Levermore C D,Oliver M.The Complex Ginzburg-Landau Equation as a Model Problem[M].Lectures in Applied Mathematics.Providence:American Mathematical Society,1997.
    [6] Batuccelli M, Gibbon J D, Oliver M. Lengths scales in solutions of the complex Ginzburg-Landau equation[J].Physica D,1996,89(3):267-286. doi: 10.1016/0167-2789(95)00275-8
    [7] LI Dong-long,GUO Bo-ling.On Cauchy problem for generalized complex Ginzburg-Landau equation in three dimensions[J].Progress in Natural Science,2003,13(9):658-665. doi: 10.1080/10020070312331344200
    [8] LI Dong-long,DAI Zheng-de.Long time behavior of solution for generalized Ginzburg-Landau equation[J].Math Anal Appl,2007,330(2):934-948. doi: 10.1016/j.jmaa.2006.07.095
    [9] Guo B,Wang X.Finite dimensional behavior for the derivative Ginzburg-Landau equation in two spatial dimensions[J].Physica D,1995,89(1):83-99. doi: 10.1016/0167-2789(95)00216-2
    [10] Crauel H,Flandoli F.Attractors for random dynamical systems[J].Probability Theory and Related Fields,1994,100(3):365-393. doi: 10.1007/BF01193705
    [11] Crauel H,Debussche A,Flandoli F.Random attractors[J].J Dynam Differential Equations,1997,9(2):307-341. doi: 10.1007/BF02219225
    [12] Arnold L.Random Dynamical Systems[M].New York: Springer,1998.
    [13] Prato G Da,Zabezyk J.Stochastic Equations in Infinite Dimensions,Encyclopedia of Mathematics and Its Applications[M].Cambridge: Cambridge University Press,1992.
    [14] Henry D.Geometric Theory of Semilinear Parabolic Equation[M].Berlin: Spring-Verlag,1981.
  • 加载中
计量
  • 文章访问数:  1734
  • HTML全文浏览量:  192
  • PDF下载量:  830
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-02-19
  • 修回日期:  2009-07-02
  • 刊出日期:  2009-08-15

目录

    /

    返回文章
    返回