留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有三阶非调和修正项时非线性弹性波动方程的对称解

M·T·穆斯塔法 K·玛苏德

M·T·穆斯塔法, K·玛苏德. 具有三阶非调和修正项时非线性弹性波动方程的对称解[J]. 应用数学和力学, 2009, 30(8): 953-962. doi: 10.3879/j.issn.1000-0887.2009.08.008
引用本文: M·T·穆斯塔法, K·玛苏德. 具有三阶非调和修正项时非线性弹性波动方程的对称解[J]. 应用数学和力学, 2009, 30(8): 953-962. doi: 10.3879/j.issn.1000-0887.2009.08.008
M. T. Mustafa, Khalid Masood. Symmetry Solutions of a Non-Linear Elastic Wave Equation With Third Order Anharmonic Corrections[J]. Applied Mathematics and Mechanics, 2009, 30(8): 953-962. doi: 10.3879/j.issn.1000-0887.2009.08.008
Citation: M. T. Mustafa, Khalid Masood. Symmetry Solutions of a Non-Linear Elastic Wave Equation With Third Order Anharmonic Corrections[J]. Applied Mathematics and Mechanics, 2009, 30(8): 953-962. doi: 10.3879/j.issn.1000-0887.2009.08.008

具有三阶非调和修正项时非线性弹性波动方程的对称解

doi: 10.3879/j.issn.1000-0887.2009.08.008
详细信息
  • 中图分类号: O347.4+1

Symmetry Solutions of a Non-Linear Elastic Wave Equation With Third Order Anharmonic Corrections

  • 摘要: 应用Lie对称法,当弹性能具有三阶非调和修正项时,分析纵向变形的非线性弹性波动方程.通过不同对称下的恒等条件,寻找对称代数,并将它简化为二阶常微分方程.对该简化的常微分方程作进一步分析后,获得若干个显式的精确解.分析Apostol的研究成果(Apostol B F.On a non-linear wave equation in elasticity.Phys Lett A,2003,318(6):545-552)发现,非调和修正项通常导致解在有限时间内具有时间相关奇异性.除了得到时间相关奇异性的解外,还得到无法显示时间相关奇异性的解.
  • [1] Polyanin A D,Zaitsev V F.Handbook of Nonlinear Partial Differential Equations[M].Boca Raton-London:CRC Press,2004.
    [2] Ovsiannikov L V.Group Analysis of Differential Equations[M].New York:Academic Press,1982.
    [3] Ames W F.Nonlinear Partial Differential Equations in Engineering[M].Vol 1-2. New York:Academic Press,1965-1972.
    [4] Baumann G.Symmetry Analysis of Differential Equations With Mathematica[M].New York:Springer-Verlag,2000.
    [5] Bluman G W, Cole J D.Similarity Methods for Differential Equations[M]. New York: Springer-Verlag,1974.
    [6] Bluman G W,Kumei S.Symmetries and Differential Equations[M]. New York:Springer-Verlag,1989.
    [7] Euler N,Steeb W H.Continuous Symmetries,Lie Algebras and Differential Equations[M].Mannheim:Bibliographisches Institut,1992.
    [8] Hansen A G.Similarity Analyses of Boundary Value Problems in Engineering[M]. Englewood Cliffs:Prentice Hall,1964.
    [9] Hydon P E.Symmetry Methods for Differential Equations[M]. Cambridge:Cambridge University Press,2000.
    [10] Ibragimov N H.CRC Handbook of Lie Group Analysis of Differential Equations. Vol 1:Symmetries,Exact Solutions and Conservation Laws[M]. Boca Raton:CRC Press,1994.
    [11] Ibragimov N H.CRC Handbook of Lie Group Analysis of Differential Equations. Vol 2:Applications in Engineering and Physical Sciences[M]. Boca Raton:CRC Press,1995.
    [12] Ibragimov N H.CRC Handbook of Lie Group Analysis of Differential Equations. Vol 3:New Trends in Theoretical Developments and Computational Methods[M]. Boca Raton:CRC Press,1996.
    [13] Ibragimov N H.Elementary Lie Group Analysis and Ordinary Differential Equations[M].Chichester:John Wiley & Sons,1999.
    [14] Miller W.Symmetry and Separation of Variables[M]. Massachusetts:Addison Wesley,Reading,1977.
    [15] Olver P J.Applications of Lie Groups to Differential Equations[M]. New York:Springer-Verlag,1986.
    [16] Stephani H.Differential Equations. Their Solution Using Symmetries[M]. Cambridge:Cambridge University Press,1989.
    [17] Kosevich Y A. Nonlinear sinusoidal waves and their superposition in anharmonic lattices[J].Phys Rev Lett,1993,71(13):2058-2061. doi: 10.1103/PhysRevLett.71.2058
    [18] Kosevich Y A. A reply to the comment by manuel rogriguez-achach and gabriel perez[J]. Phys Rev Lett,1997,79(23):4716-4716. doi: 10.1103/PhysRevLett.79.4716
    [19] Rodriguez-Achach M,Perez G. Comment on:nonlinear sinusoidal waves and their superposition in anharmonic lattices[J].Phys Rev Lett,1997,79(23):4715-4716. doi: 10.1103/PhysRevLett.79.4715
    [20] Pouget J. Lattice-dynamics and stability of modulated-strain structures for elastic phase-transitions in alloys[J].Phys Rev B,1993,48(2):864-875. doi: 10.1103/PhysRevB.48.864
    [21] Alfinito E,Causo M S,Profilo G,et al. A class of nonlinear wave equations containing the continuous Toda case[J].J Phys A,1998,31(9):2173-2189. doi: 10.1088/0305-4470/31/9/008
    [22] Apostol B F. On a non-linear wave equation in elasticity[J].Phys Lett A,2003,318(6):545-552. doi: 10.1016/j.physleta.2003.09.064
    [23] Fermi E,Pasta J,Ulam S. Los alamos report LA-1940[A].In:Segra E,Ed.Collected Papers by Entico Fermi[C].Vol 2. Chicago:Unveristy of Chicago Press,1965,987.
    [24] Bokhari A H,Kara A H,Zaman F D. Exact solutions of some general nonlinear wave equations in elasticity[J].Nonlinear Dyn,2007,48:49-54. doi: 10.1007/s11071-006-9050-z
    [25] Gradshteyn I S,Ryzhik I M.Table of Integrals,Series and Products[M]. New York:Academic Press 1980.
    [26] Slater L J.Generalized Hypergeometric Functions[M]. Cambridge:Cambridge University Press,1966.
  • 加载中
计量
  • 文章访问数:  1851
  • HTML全文浏览量:  202
  • PDF下载量:  966
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-23
  • 修回日期:  2009-03-16
  • 刊出日期:  2009-08-15

目录

    /

    返回文章
    返回