留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Maxwell方程反演的小波多尺度方法

丁亮 韩波 刘家琦

丁亮, 韩波, 刘家琦. Maxwell方程反演的小波多尺度方法[J]. 应用数学和力学, 2009, 30(8): 970-978. doi: 10.3879/j.issn.1000-0887.2009.08.010
引用本文: 丁亮, 韩波, 刘家琦. Maxwell方程反演的小波多尺度方法[J]. 应用数学和力学, 2009, 30(8): 970-978. doi: 10.3879/j.issn.1000-0887.2009.08.010
DING Liang, HAN Bo, LIU Jia-qi. Wavelet Multiscale Method for the Inversion of Maxwell’s Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 970-978. doi: 10.3879/j.issn.1000-0887.2009.08.010
Citation: DING Liang, HAN Bo, LIU Jia-qi. Wavelet Multiscale Method for the Inversion of Maxwell’s Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 970-978. doi: 10.3879/j.issn.1000-0887.2009.08.010

Maxwell方程反演的小波多尺度方法

doi: 10.3879/j.issn.1000-0887.2009.08.010
详细信息
    作者简介:

    丁亮(1979- ),男,黑龙江泰来人,博士生(Tel:+86-451-82113465;E-mail:iamashen@yahoo.com.cn);韩波,教授,博士(联系人.E-mail:bohan@hit.edu.cn).

  • 中图分类号: O157.2;O357

Wavelet Multiscale Method for the Inversion of Maxwell’s Equation

  • 摘要: 研究Maxwell方程电导率的识别问题.主要的难点是目标函数中存在一些局部极小值.将小波多尺度方法应用到Maxwell方程反演过程,通过小波变换,反问题被分解到多个尺度上,于是原反问题可以在子一级的尺度上,由大尺度到小尺度逐级求解.在每个尺度上我们采用稳定、快速的Gauss-Newton迭代法.数值算例的结果显示了这种方法大范围收敛、计算效率高、结果准确,是一种可行的计算方法.
  • [1] Alumbaugh D L,Newman G A.3D massively parallel electromagnetic inversion—part B:analysis of a cross well experiment[J].Geophys J Int,1997,128:355-363. doi: 10.1111/j.1365-246X.1997.tb01560.x
    [2] Newman G A,Recher S,Tezkan B,et al.3D inversion of a scalar radio magnetotelluric field data set[J].Geophys,2003,68(3):782-790. doi: 10.1190/1.1581031
    [3] Ascher U M,Haber E.A multigrid method for distributed parameter estimation problem[J].Electron Trans Numer Anal,2003,15:1-17.
    [4] Baboolal S,Bharuthram R.Two-scale numerical solution of the electromagnetic two-fluid plasma-Maxwell equations:shock and soliton simulation[J].Mathematics and Computers in Simulation,2007,76(1/3):3-7. doi: 10.1016/j.matcom.2007.01.004
    [5] Haber E.Quasi-Newton methods for large-scale electromagnetic inverse problems[J].Inverse Problems,2005,21(1):305-323. doi: 10.1088/0266-5611/21/1/019
    [6] HE Sai-ling,Weston V H.Wave-splitting and absorbing boundary condition for Maxwell's equations on a curved surface[J].Mathematics and Computers in Simulation,1999,50(5/6):435-455. doi: 10.1016/S0378-4754(99)00097-X
    [7] Dorn O,Aguirre H B,Berryman J G,et al.A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields[J].Inverse Problems,1999,15(6):1523-1558. doi: 10.1088/0266-5611/15/6/309
    [8] Farquharson C G.,Oldenburg D W,Li Y G.An approximate inversion algorithm for time-domain electromagnetic surveys[J].Journal of Applied Geophysics,1999,42(2):71-80. doi: 10.1016/S0926-9851(99)00023-3
    [9] Cohen A,Hoffmann M,Reiss M.Adaptive wavelet Galerkin methods for linear inverse problems[J].SIAM J Numer Anal,2004,42(4):1749-1501.
    [10] Dicken V,Maass P.Wavelet Galerkin methods for ill-posed problems[J].J Inverse and Ill-Posed Problems,1996,4(3):203-222.
    [11] FU Chun-li,ZHU You-bin,QIU Chun-yu.Wavelet regularization for an inverse heat conduction problem[J].J Math Anal Appl,2003,288(1):212-222. doi: 10.1016/j.jmaa.2003.08.003
    [12] LIU Jun.A multiresolution method for distributed parameter estimation[J].SIAM J Sci Comput,1993,14(2):389-405. doi: 10.1137/0914024
    [13] FU Hong-sun,HAN Bo.A wavelet multiscale method for the inverse problems of a two-dimentional wave equation[J].Inverse Problems in Science and Engineering,2004,12:643-656. doi: 10.1080/10682760410001694203
    [14] Bunks C,Saleck F M,Zaleski S,et al.Multiscale seismic waveform inversion[J].Geophysics,1995,60(5):1457-1473. doi: 10.1190/1.1443880
    [15] Yee K S.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J].IEEE Transactions on Antennas and Propagation,1996,14(3):302-308.
    [16] Farquharson C,Oldenburg D.Non-linear inversion using general measures of data misfit and model structure[J].Geophysics,1998,134(1):213-227.
    [17] Huber P J.Robust estimation of a location parameter[J].Ann Math Stats,1964,35(1):73-101. doi: 10.1214/aoms/1177703732
    [18] Haber E,Ascher U,Oldenburg D.On optimization techniques for solving non-linear inverse problems[J].Inverse Problems,2000,16(5):1263-1280. doi: 10.1088/0266-5611/16/5/309
  • 加载中
计量
  • 文章访问数:  1519
  • HTML全文浏览量:  142
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-27
  • 修回日期:  2009-06-29
  • 刊出日期:  2009-08-15

目录

    /

    返回文章
    返回