留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二阶非线性脉冲微分方程边界值问题

H·伯利科托路 A·胡舍诺夫

H·伯利科托路, A·胡舍诺夫. 二阶非线性脉冲微分方程边界值问题[J]. 应用数学和力学, 2009, 30(8): 979-989. doi: 10.3879/j.issn.1000-0887.2009.08.011
引用本文: H·伯利科托路, A·胡舍诺夫. 二阶非线性脉冲微分方程边界值问题[J]. 应用数学和力学, 2009, 30(8): 979-989. doi: 10.3879/j.issn.1000-0887.2009.08.011
Huseyin Bereketoglu, Aydin Huseynov. Boundary Value Problems for Nonlinear Second Order Difference Equations With Impulse[J]. Applied Mathematics and Mechanics, 2009, 30(8): 979-989. doi: 10.3879/j.issn.1000-0887.2009.08.011
Citation: Huseyin Bereketoglu, Aydin Huseynov. Boundary Value Problems for Nonlinear Second Order Difference Equations With Impulse[J]. Applied Mathematics and Mechanics, 2009, 30(8): 979-989. doi: 10.3879/j.issn.1000-0887.2009.08.011

二阶非线性脉冲微分方程边界值问题

doi: 10.3879/j.issn.1000-0887.2009.08.011
基金项目: NATOPC-A1土耳其科学技术委员会(TUBITAK)资助项目
详细信息
  • 中图分类号: O175.8

Boundary Value Problems for Nonlinear Second Order Difference Equations With Impulse

  • 摘要: 研究二阶非线性脉冲微分方程边界值问题(BVPI).构造了BVPI的Green函数,并将非线性的BVPI转化为不动点问题,利用Banach不动点定理和Lipschitz条件,证明了该非线性BVPI解的唯一性,最后证明了BVPI解的存在性定理.
  • [1] George R K,Nandakumaran A K,Arapostathis A. A note on controllability of impulsive systems[J].J Math Anal Appl,2000,241(2):276-283. doi: 10.1006/jmaa.1999.6632
    [2] Guan Z H,Chen G,Ueta T.On impulsive control of a periodically forced chaotic pendulum system[J].IEEE Trans Automat Control,2000,45(9):1724-1727. doi: 10.1109/9.880633
    [3] Nenov S.Impulsive controllability and optimization problems in population dynamics[J].Nonlinear Analysis:Theory,Methods Applications,1999,36(7):881-890. doi: 10.1016/S0362-546X(97)00627-5
    [4] Lakmeche A,Arino O.Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment[J].Dynam Contin Discrete Impuls Systems,2000,7(2):265-287.
    [5] Lenci S,Rega G.Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation[J].Chaos Solitons Fractals,2000,11(15):2453-2472. doi: 10.1016/S0960-0779(00)00030-8
    [6] Bainov D D,Simeonov P S.Systems With Impulse Effects[M].Chichester:Ellis Horwood,1989.
    [7] Benchohra M,Henderson J,Ntouyas S.Impulsive Differential Equations and Inclusions[M].New York:Hindawi Publishing Corporation,2006.
    [8] Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.
    [9] Samoilenko A M,Perestyuk N A.Impulsive Differential Equations[M].Singapore:World Scientific,1995.
    [10] Elaydi S N.An Introduction to Difference Equations[M].New York:Springer-Verlag,1996.
    [11] Kelley W G,Peterson A C.Difference Equations:An Introduction With Applications[M].New York:Academic Press,1991.
    [12] He Z M,Zhang X M.Monotone iterative technique for first order impulsive difference equations with periodic boundary conditions[J].Appl Math Comput,2004,156(3):605-620. doi: 10.1016/j.amc.2003.08.013
    [13] LI Jian-li,SHEN Jian-hua.Positive solutions for first order difference equations with impulses[J].International Journal of Difference Equations,2006,1(2):225-239.
    [14] Tang X H,Yu J S.Oscillation and stability for a system of linear impulsive delay difference equations[J].Math Appl (Wuhan),2001,14:28-32.
    [15] Wang P,Wang W.Boundary value problems for first order impulsive difference equations[J].International Journal of Difference Equations,2006,1:249-259.
    [16] Zhang Q Q.On a linear delay difference equation with impulses[J].Ann Differential Equations,2002,18(2):197-204.
    [17] Bereketoglu H,Huseynov A.On positive solutions for a nonlinear boundary value problem with impulse[J].Czechoslovak Mathematical Journal,2006,56(1):247-265. doi: 10.1007/s10587-006-0015-7
  • 加载中
计量
  • 文章访问数:  1632
  • HTML全文浏览量:  172
  • PDF下载量:  737
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-01-20
  • 修回日期:  2009-06-19
  • 刊出日期:  2009-08-15

目录

    /

    返回文章
    返回