留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类二阶拟线性边值问题的可解性

姚庆六

姚庆六. 一类二阶拟线性边值问题的可解性[J]. 应用数学和力学, 2009, 30(8): 990-996. doi: 10.3879/j.issn.1000-0887.2009.08.012
引用本文: 姚庆六. 一类二阶拟线性边值问题的可解性[J]. 应用数学和力学, 2009, 30(8): 990-996. doi: 10.3879/j.issn.1000-0887.2009.08.012
YAO Qing-liu. Solvability of a Class of Second-Order Quasilinear Boundary Value Problems[J]. Applied Mathematics and Mechanics, 2009, 30(8): 990-996. doi: 10.3879/j.issn.1000-0887.2009.08.012
Citation: YAO Qing-liu. Solvability of a Class of Second-Order Quasilinear Boundary Value Problems[J]. Applied Mathematics and Mechanics, 2009, 30(8): 990-996. doi: 10.3879/j.issn.1000-0887.2009.08.012

一类二阶拟线性边值问题的可解性

doi: 10.3879/j.issn.1000-0887.2009.08.012
详细信息
    作者简介:

    姚庆六(1946- ),男,上海人,教授(E-mail:yaoqingliu2002@hotmail.com).

  • 中图分类号: O175.8

Solvability of a Class of Second-Order Quasilinear Boundary Value Problems

  • 摘要: 当非线性项奇异和无穷远处的极限增长函数存在时,考察了一类二阶拟线性边值问题.通过引入非线性项在有界集合上的高度函数,并且考察高度函数的积分,证明了一个解的存在定理.该定理表明当极限增长函数的积分具有适当值时此问题有一个解.
  • [1] Gelfand I N.Some problems in the theory of quasilinear equations[J].Trans Amer Math Soc,1963,29(2):295-381.
    [2] Bobernes J,Eberly D.Mathematical Problems From Combustion Theory[M].Volume 83 of Appl Math Sci.New York:Springer-Verlag,1989.
    [3] Gidas B,NI Wei-min,Nirenberg L.Symmetry and related properties via the maximum principle[J].Commun Math Phys,1979,68(1):209-243. doi: 10.1007/BF01221125
    [4] Joseph D D,Lundgren T S.Quasilinear Dirichlet problems driven by positive sources [J].Arch Rat Mech Anal,1973,49(2):241-269.
    [5] Cac N P,Fink A M,Gupta J A.Nonnegative solutions of quasilinear elliptic problems with nonnegative coefficients[J].J Math Anal Appl,1997,206(1):1-9. doi: 10.1006/jmaa.1997.4882
    [6] Korman P.Solution curves for semilinear equations on a ball[J].Proc Amer Math Soc,1997,125(11):1997-2006. doi: 10.1090/S0002-9939-97-04119-1
    [7] Korman P.Curves of sign-changing solutions for semilinear equations[J].Nonlinear Anal TMA,2002,51(5):801-820. doi: 10.1016/S0362-546X(01)00863-X
    [8] Hai D D.Uniqueness of positive solutions for a class of semilinear elliptic systems [J].Nonlinear Anal TMA,2003,52(4):595-603. doi: 10.1016/S0362-546X(02)00125-6
    [9] 姚庆六.单位球上一类非线性Dirichlet问题的正对径解[J].厦门大学学报,自然科学版,2003,42(5):567-569.
    [10] 姚庆六.一类奇异二阶拟线性方程的解和正解[J].华东理工大学学报,2007,33(2):290-293.
    [11] 姚庆六.一类非线性Dirichlet边值问题正径向解[J].数学物理学报,A辑,2009,29(1):48-56.
    [12] YAO Qing-liu.An iterative method to a class of qualinear boundary value problems[J].J Compu Appl Math,2009,230(1):306-311. doi: 10.1016/j.cam.2008.11.015
    [13] 姚庆六.一类奇异二阶边值问题的正周期解[J].数学学报,2007,50(6):1357-1364.
    [14] YAO Qing-liu.Positive solution to a special singular second-order boundary value problem[J].Math Comput Modeling,2008,47(11/12):1284-1291. doi: 10.1016/j.mcm.2007.08.003
    [15] YAO Qing-liu.Existence and multiplicity of positive solutions to a singular elastic beam equation rigidly fixed at both ends[J].Nonlinear Anal TMA,2008,69(8):2683-2694. doi: 10.1016/j.na.2007.08.043
    [16] 程其骧,张奠宙,魏国强,等.实变函数与泛函分析基础[M].第二版.北京:高等教育出版社,2003.
  • 加载中
计量
  • 文章访问数:  1541
  • HTML全文浏览量:  125
  • PDF下载量:  769
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-11
  • 修回日期:  2009-06-14
  • 刊出日期:  2009-08-15

目录

    /

    返回文章
    返回