留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类不连续系统关于闭不变集的有限时间稳定性研究

程桂芳 慕小武

程桂芳, 慕小武. 一类不连续系统关于闭不变集的有限时间稳定性研究[J]. 应用数学和力学, 2009, 30(8): 1003-1008. doi: 10.3879/j.issn.1000-0887.2009.08.014
引用本文: 程桂芳, 慕小武. 一类不连续系统关于闭不变集的有限时间稳定性研究[J]. 应用数学和力学, 2009, 30(8): 1003-1008. doi: 10.3879/j.issn.1000-0887.2009.08.014
CHENG Gui-fang, MU Xiao-wu. Finite-Time Stability With Respect to a Closed Invariant Set for a Class of Discontinuous Systems[J]. Applied Mathematics and Mechanics, 2009, 30(8): 1003-1008. doi: 10.3879/j.issn.1000-0887.2009.08.014
Citation: CHENG Gui-fang, MU Xiao-wu. Finite-Time Stability With Respect to a Closed Invariant Set for a Class of Discontinuous Systems[J]. Applied Mathematics and Mechanics, 2009, 30(8): 1003-1008. doi: 10.3879/j.issn.1000-0887.2009.08.014

一类不连续系统关于闭不变集的有限时间稳定性研究

doi: 10.3879/j.issn.1000-0887.2009.08.014
基金项目: 数学天元基金资助项目(10826078);国家自然科学基金资助项目(60874006)
详细信息
    作者简介:

    程桂芳(1979- ),女,河南温县人,讲师(联系人.E-mail:gfcheng@zzu.edu.cn).

  • 中图分类号: O231.2

Finite-Time Stability With Respect to a Closed Invariant Set for a Class of Discontinuous Systems

  • 摘要: 主要研究右端不连续系统在Filippov解意义下关于闭不变集(未必是紧集)的有限时间稳定问题.当Liapunov函数是Lipschitz连续的正则函数情况下,给出了相关的Liapunov稳定性定理.
  • [1] Matrosov V M.On the stability of motion[J].J Appl Math Mech,1962,26(4):1337-1353. doi: 10.1016/0021-8928(62)90010-2
    [2] 贺建勋.关于不连续系统稳定性的比较原理[J].厦门大学学报(自然科学版),1982,13(2):117-126.
    [3] Shevitz Daniel,Paden Bard.Lyapunov stability theory of nonsmooth systems[J].IEEE Transactions on Automatic Control,1994,39(9):1910-1914. doi: 10.1109/9.317122
    [4] Bacciottic A,Ceragioli F.Stability and stabilization of discontinuous systems and nonsmooth Lyapunov function[J].Esaim-Cocv,1999,4(2):361-376. doi: 10.1051/cocv:1999113
    [5] 慕小武,程桂芳,唐风军. 非自治非光滑系统的Matrosov稳定性定理[J].应用数学学报,2007,30(1):168-175.
    [6] 程桂芳,慕小武,丁志帅. 一类不连续非自治系统的一致最终有界性[J].应用数学学报,2007,30(4):675-681.
    [7] 慕小武,程桂芳,丁志帅.基于向量Liapunov函数不连续系统的稳定性研究[J].应用数学和力学,2007,28(12):1441-1447.
    [8] Lin Y D,Sontag E D,Wang Y.A smooth converse Lyapunov theorem for robust stability[J].SIAM J Control and Optimization,1996,34(1):124-160. doi: 10.1137/S0363012993259981
    [9] Haimo V T.Finite time Controller[J].SIAM J Control and Optimization,1986,24(4):760-770. doi: 10.1137/0324047
    [10] Moulay E,Perruquetti W.Finite time stability of differential inclusions[J].IMA Journal of Mathematical Control and Information,2005,22(4):465-475. doi: 10.1093/imamci/dni039
    [11] Bhat S P,Bernstein D S.Continuous, finite-time stabilization of the translational and rotational double integrators[J].IEEE Transactions on Automatic Control,1998,43(5):678-682. doi: 10.1109/9.668834
    [12] Bhat S P,Bernstein D S.Finite-time stability of continuous autonomous systems[J].SIAM J Control and Optimization,2000,38(3):751-766. doi: 10.1137/S0363012997321358
    [13] Hong Y. Finite-time stabilization and stabilizability of a class controllable systems[J].Systems and Control Letters,2002,46(2):231-236. doi: 10.1016/S0167-6911(02)00119-6
    [14] Orlov Y.Finite time stability and robust control synthesis of uncertain switched systems[J].SIAM J Control and Optimization,2005,43(4):1253-1271.
    [15] Filippov A F.Differential Equations With Discontinuous Right-Hand Sides[M].Dordrecht,The Netherlands:Kluwer,1988.
    [16] Aubin J P,Cellina A.Differential Inclusions[M].Grundlehren der Mathematischen Wiissenschaften.New York:Springer-Verlag,1984.
    [17] Kim S J,Ha I J.Existence of caratheodory solutions in nonlinear systems with discontinuous switching feedback controllers[J].IEEE Transactions on Automatic Control,2004,49(7):1167-1171. doi: 10.1109/TAC.2004.831127
    [18] Clarke F H,Ledyaev Yu S,Stern R J,et al.Nonsmooth Analysis and Control Theory[M].Graduate Texts in Mathematics.New York:Springer-Verlag,1998.
    [19] Khalil H K.Nonlinear Systems[M].3rd Ed.New Jersey:Prentice Hall,2002.
  • 加载中
计量
  • 文章访问数:  1467
  • HTML全文浏览量:  132
  • PDF下载量:  1058
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-31
  • 修回日期:  2009-06-29
  • 刊出日期:  2009-08-15

目录

    /

    返回文章
    返回