留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热偶极子与圆形界面裂纹的作用

肖万伸 谢超 刘又文

肖万伸, 谢超, 刘又文. 热偶极子与圆形界面裂纹的作用[J]. 应用数学和力学, 2009, 30(10): 1143-1152. doi: 10.3879/j.issn.1000-0887.2009.10.002
引用本文: 肖万伸, 谢超, 刘又文. 热偶极子与圆形界面裂纹的作用[J]. 应用数学和力学, 2009, 30(10): 1143-1152. doi: 10.3879/j.issn.1000-0887.2009.10.002
XIAO Wan-shen, XIE Chao, LIU You-wen. Interaction Between a Heat Dipole and a Circular Interfacial Crack[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1143-1152. doi: 10.3879/j.issn.1000-0887.2009.10.002
Citation: XIAO Wan-shen, XIE Chao, LIU You-wen. Interaction Between a Heat Dipole and a Circular Interfacial Crack[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1143-1152. doi: 10.3879/j.issn.1000-0887.2009.10.002

热偶极子与圆形界面裂纹的作用

doi: 10.3879/j.issn.1000-0887.2009.10.002
基金项目: 湖南省自然科学基金资助项目(05JJ30140)
详细信息
    作者简介:

    肖万伸(1959- ),男,湖南永州人,教授,博士(联系人.Tel:+86-731-8882330;E-mail:xw-shndc@126.com).

  • 中图分类号: TB381;O343.7

Interaction Between a Heat Dipole and a Circular Interfacial Crack

  • 摘要: 热偶极子由热源和热汇组成.应用解析延拓方法、广义Liouville 定理及Muskhelishvili 边值问题理论,研究了在热源偶极子作用下含圆形夹杂复合材料的界面裂纹问题.导出温度场和应力场之后,分析了温度场和夹杂对界面断裂的效应.作为实例,针对若干种组合材料及热偶极子处于不同位置,给出了界面裂纹热应力强度因子的数值变化曲线.结果表明,界面裂纹特性取决于材料的弹性常数和热学性能及偶极子的情况
  • [1] Raymond D, David M, Cheng H. Thermoelastic stress in the semi-infinite solid[J]. Journal of Applied Physics,1950,〖STHZ〗21(9): 931-933.
    [2] Zhu Z H, Muguid S A. On the thermoelastic stresses of multiple interacting inhomogencities[J].Int J Solids and Structures, 2000, 〖STHZ〗37(16): 2313-2330.
    [3] Muskhelishvili N L. Some Basic Problems of Mathematical Theory of Elasticity[M]. Leyden:Noordhoff, 1975.
    [4] Chao C K, Chang R C. Thermal interface crack problems in dissimilar anisotropic media[J]. Journal of Applied Physics,1992, 〖STHZ〗72(7): 2598-2604.
    [5] Qin Q-H. Thermoelectroelastic solution for elliptic inclusions and application to crack-inclusion problems[J]. Applied Mathematical Modelling,2000,〖STHZ〗25(1): 1-23.
    [6] 肖万伸,魏刚.稳态温度场下螺旋位错与圆弧裂纹的交互作用[J].机械强度,2007,〖STHZ〗29(5): 779-783.
    [7] Pham C V, Hasebe N, Wang X F, et al. Interaction between a cracked hole and a line crack under uniform heat flux[J]. Int J Fract ,2005, 〖STHZ〗13(4): 367-384.
    [8] Hasebe N, Wang X F, Saito T, et al. Interaction between a rigid inclusion and a line crack under uniform heat flux[J]. International Journal of Solids and Structures, 2007, 〖STHZ〗44(7/8): 2426-2441.
    [9] Chao C K, Shen M H. On bonded circular inclusion in plane thermoelasticity[J]. ASME, J Appl Mech, 1997, 〖STHZ〗64(4): 1000-1004.
    [10] Chao C K, Tan C J. On the general solutions for annular problems with a point heat source[J]. Journal of Applied Mechanics,2000, 〖STHZ〗67(3): 511-518.
    [11] Rahman M. The axisymmetric contact problem of thermoelasticity in the presence of an internal heat source[J].International Journal of Engineering Science 2003, 〖STHZ〗41(16): 1899-1911.
    [12] Chao C K, Chen F M. Thermal stresses in an isotropic trimaterial interacted with a pair of point heat source and heat sink[J]. International Journal of Solids and Structures, 2004,〖STHZ〗41(22/23):6233-6247.
    [13] Hasebe N, Wang X F. Complex variable method for thermal stress problem[J]. Journal of Thermal Stresses,2005, 〖STHZ〗28(6/7):595-648.
    [14] Sih G C, Raris P C, Erdogan F. Crack-tip stress factors for plane extension and plane bending problem[J].Journal of Applied Mechanics,1962,〖STHZ〗29(1): 306-312.
  • 加载中
计量
  • 文章访问数:  1729
  • HTML全文浏览量:  157
  • PDF下载量:  728
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-09-25
  • 修回日期:  2009-09-01
  • 刊出日期:  2009-10-15

目录

    /

    返回文章
    返回