留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚节点的多边形有限元法

唐旭海 吴圣川 郑超 张建海

唐旭海, 吴圣川, 郑超, 张建海. 基于虚节点的多边形有限元法[J]. 应用数学和力学, 2009, 30(10): 1153-1164. doi: 10.3879/j.issn.1000-0887.2009.10.003
引用本文: 唐旭海, 吴圣川, 郑超, 张建海. 基于虚节点的多边形有限元法[J]. 应用数学和力学, 2009, 30(10): 1153-1164. doi: 10.3879/j.issn.1000-0887.2009.10.003
TANG Xu-hai, WU Sheng-chuan, ZHENG Chao, ZHANG Jian-hai. A Novel Virtual Node Method for Polygonal Elements[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1153-1164. doi: 10.3879/j.issn.1000-0887.2009.10.003
Citation: TANG Xu-hai, WU Sheng-chuan, ZHENG Chao, ZHANG Jian-hai. A Novel Virtual Node Method for Polygonal Elements[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1153-1164. doi: 10.3879/j.issn.1000-0887.2009.10.003

基于虚节点的多边形有限元法

doi: 10.3879/j.issn.1000-0887.2009.10.003
详细信息
    作者简介:

    唐旭海(1984- ),男,成都人,博士生(联系人.E-mail:X.H.Tang84@gmail.com).

  • 中图分类号: O34

A Novel Virtual Node Method for Polygonal Elements

  • 摘要: 虚节点法是一种新的基于单位分解理论的多边形有限元法.将虚节点法应用于求解弹性力学问题,并且通过大量数值实验测试虚节点法的计算效果.因为虚节点法具有多项式形式,所以有效地降低了传统多边形有限元法的积分误差.数值实验证明,在分片实验中虚节点法能得到比包括Wachspress法和mean value法在内的传统多边形有限元法更精确的数值结果.在收敛性试验中,虚节点法在相同节点数的条件下能取得比三角形一次单元更精确的数值结果.因为虚节点法能适应任意边数的多边形单元,所以对网格具有很强的适应性,在几何条件复杂、网格生成困难的问题中具有良好的应用价值.为了展示虚节点法潜在的应用价值,用虚节点法求解断裂力学应力强度因子和模拟裂纹扩展.同时,基于多边形单元的网格重划分技术和网格加密技术也应用于求解断裂力学应力强度因子和模拟裂纹扩展
  • [1] Wachspress E L. A Rational Finite Element Basis[M]. New York: Academic Press, 1975.
    [2] Tabarraei A,Sukumar N. Adaptive computations on conforming quadtree meshes[J]. Finite Elements in Analysis and Design, 2005, 41(7/8): 686-702. doi: 10.1016/j.finel.2004.08.002
    [3] Sukumar N, Malsch E A. Recent advances in the construction of polygonal finite element interpolants[J]. Archives of Computational Methods in Engineering, 2006,13(1): 129-163. doi: 10.1007/BF02905933
    [4] Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19-27. doi: 10.1016/S0167-8396(03)00002-5
    [5] Melenk J M, Babuska I. The partition of unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4): 289-314. doi: 10.1016/S0045-7825(96)01087-0
    [6] Rajendran S, Zhang B R.A “FE-meshfree”QUAD4 element based on partition of unity[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 197(1/4): 128-147. doi: 10.1016/j.cma.2007.07.010
    [7] Liu G R, Gu Y T. A point interpolation method for two dimensional solid[J]. International Journal for Numerical Methods in Engineering, 2001, 50(4): 937-951. doi: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
    [8] Zheng C,Tang X H, Zhang J H, et al. A novel mesh-free poly-cell Galerkin method[J]. Acta Mechanica Sinica, 2009,25(4): 517-527. doi: 10.1007/s10409-009-0239-5
    [9] Zheng C, Wu S C, Tang X H, et al. A meshfree poly-cell Galerkin (MPG) approach for problems of elasticity and fracture[J]. Computer Modelling in Engineering & Sciences, 2008, 38(2): 149-178.
    [10] Strang G, Fix G. An Analysis of the Finite Element Method[M]. Engle-wood Cliffs, New Jersey: Prentice-Hall, 1973.
    [11] Zienkiewicz O C, Taylor R L. The Finite Element Method[M]. 5th Ed. Oxford, UK: Butterworth Heinemann, 2000.
    [12] Mark S Shephard, Marcel K Georges. Automatic three-dimensional mesh generation by the finite octree technique[J]. International Journal for Numerical Methods in Engineering, 1991, 32(4): 709-749. doi: 10.1002/nme.1620320406
    [13] Timoshenko S P, Goodier J N. Theory of Elasticity[M]. 3rd Ed. New York: McGraw, 1970.
    [14] Roark R J, Young W C. Formulas for Stress and Strain[M]. New York: McGraw, 1975.
    [15] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [16] Moes N, Dolbow J, Belyschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Method in Engineering, 1999, 46 (1): 131-150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
    [17] Aliabadi M H, Rooke D P, Cartwright D J. Mixed-mode Bueckner weight functions using boundary element analysis[J]. International Journal of Fracture, 1987, 34(2): 131-147. doi: 10.1007/BF00019768
    [18] Bouchard P O, Bay F, Chastel Y, et al. Crack propagation modeling using an advanced remeshing technique[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(3): 723-742 doi: 10.1016/S0045-7825(99)00324-2
  • 加载中
计量
  • 文章访问数:  1726
  • HTML全文浏览量:  188
  • PDF下载量:  933
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-22
  • 修回日期:  2009-09-03
  • 刊出日期:  2009-10-15

目录

    /

    返回文章
    返回