留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平稳Gauss环境激励下模态参数识别的新方法

杜秀丽 汪凤泉

杜秀丽, 汪凤泉. 非平稳Gauss环境激励下模态参数识别的新方法[J]. 应用数学和力学, 2009, 30(10): 1213-1222. doi: 10.3879/j.issn.1000-0887.2009.10.009
引用本文: 杜秀丽, 汪凤泉. 非平稳Gauss环境激励下模态参数识别的新方法[J]. 应用数学和力学, 2009, 30(10): 1213-1222. doi: 10.3879/j.issn.1000-0887.2009.10.009
DU Xiu-li, WANG Feng-quan. A New Modal Identification Method Under the Non-Stationary Gaussian Ambient Excitation[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1213-1222. doi: 10.3879/j.issn.1000-0887.2009.10.009
Citation: DU Xiu-li, WANG Feng-quan. A New Modal Identification Method Under the Non-Stationary Gaussian Ambient Excitation[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1213-1222. doi: 10.3879/j.issn.1000-0887.2009.10.009

非平稳Gauss环境激励下模态参数识别的新方法

doi: 10.3879/j.issn.1000-0887.2009.10.009
基金项目: 国家自然科学基金(重点)资助项目(50278017)
详细信息
    作者简介:

    杜秀丽(1974- ),女,山西人,讲师,博士(联系人.Tel:+86-25-85328301;E-mail:duxiuli@njnu.edu.cn).

  • 中图分类号: O324,O211.63,TU311.3

A New Modal Identification Method Under the Non-Stationary Gaussian Ambient Excitation

  • 摘要: 结合多元连续时间自回归模型,针对受均匀调制Gauss随机激励的线性时不变系统,提出了一种时域模态识别的新方法.该方法仅从响应数据就能够识别系统的物理参数.首先把结构动力学方程转化为一个3阶的连续时间自回归模型;接着基于在非常短的时间段内均匀调制函数接近于一个常数矩阵以及随机微分方程强解的性质,得到均匀调制函数的估计, 并针对两种特殊情况进行讨论;然后利用Girsanov定理,对条件似然函数进行极大化,得到物理参数的精确极大似然估计.数值结果表明,该估计不仅具有极高的精度和稳健性,而且计算效率非常高.
  • [1] Conforto S, D′Alessio T. Spectral analysis for non-stationary signals from mechanical measurements: a parametric approach[J].Mechanical Systems and Signal Processing, 1999,13(3):395-411. doi: 10.1006/mssp.1998.1220
    [2] Zhang Z Y,Hua H X, Xu X Z,et al.Modal parameter identification through Gabor expansion of response signals[J].Journal of Sound and Vibration,2003,266(5):943-955. doi: 10.1016/S0022-460X(02)01381-0
    [3] Bonato P,Ceravolo R,De Stefano A,et al. Use of cross time-frequency estimators for structural identification in non-stationary conditions and under unknown excitation[J].Journal of Sound and Vibration,2000,237(5):775-791. doi: 10.1006/jsvi.2000.3097
    [4] Lardies J,Ta M N,Berthillier M. Modal parameter estimation based on the wavelet transform of output data[J].Archive of Applied Mechanics,2004,73(9/10):718-733. doi: 10.1007/s00419-004-0329-6
    [5] Yang J N,Lei Y,Pan S W,et al. System identification of linear structures based on Hilbert-Huang spectral analysis.part 1: normal modes[J].Earthquake Engineering and Structural Dynamics,2003,32(9):1443-1467. doi: 10.1002/eqe.287
    [6] Tse P,Yang W X,Tam H Y.Machine fault diagnosis through an effective exact wavelet analysis[J].Journal of Sound and Vibration,2004,277(4/5):1005-1024. doi: 10.1016/j.jsv.2003.09.031
    [7] Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society of London,Series A,1998,454(1971):903-951. doi: 10.1098/rspa.1998.0193
    [8] Peng Z K,Tse P W,Chu F L.An improved Hilbert-Huang transform and its application in vibration signal analysis[J].Journal of Sound and Vibration,2005,286(1/2):187-205. doi: 10.1016/j.jsv.2004.10.005
    [9] 李杰,陈隽.未知输入条件下的结构物理参数识别研究[J].计算力学学报,1999,16(1):32-40.
    [10] 陈健云,王建有,林皋.未知输入下的复合反演研究[J].工程力学,2006,23(1):6-10.
    [11] Poulimenos A G,Fassois S D. Non-stationary mechanical vibration modelling and analysis via functional series TARMA models[A].In:Van den Hof P M J,Wahlberg B,Weiland S Eds.Proceedings of the 13th IFAC Symposium on System Identification[C].Rotterdam,Netherlands,2003,965-970.
    [12] Poulimenos A G,Fassois S D.Parametric time-domain methods for non-stationary random vibration modelling and analysis: a critical survey and comparison[J].Mechanical Systems and Signal Processing,2006,20(4):763-816 doi: 10.1016/j.ymssp.2005.10.003
    [13] Brockwell P,Davis R A,Yu Y.Continuous-time Gaussian autoregression[J].Statistica Sinica,2007,17(1): 63-80
    [14] Karatzas L,Shreve S E.Brownian Motion and Stochastic Calculus[M].New York:Springer Press,2000.
    [15] Harris C M,Crede C E.Shock and Vibration Handbook[M].New York: McGraw-Hill Book Company,1976.
  • 加载中
计量
  • 文章访问数:  1519
  • HTML全文浏览量:  121
  • PDF下载量:  879
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-01-06
  • 修回日期:  2009-07-10
  • 刊出日期:  2009-10-15

目录

    /

    返回文章
    返回