留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲泛函微分方程的渐近稳定性

罗治国 罗艳

罗治国, 罗艳. 脉冲泛函微分方程的渐近稳定性[J]. 应用数学和力学, 2009, 30(10): 1234-1242. doi: 10.3879/j.issn.1000-0887.2009.10.011
引用本文: 罗治国, 罗艳. 脉冲泛函微分方程的渐近稳定性[J]. 应用数学和力学, 2009, 30(10): 1234-1242. doi: 10.3879/j.issn.1000-0887.2009.10.011
LUO Zhi-guo, LUO Yan. Asymptotic Stability for Impulsive Functional Differential Equations[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1234-1242. doi: 10.3879/j.issn.1000-0887.2009.10.011
Citation: LUO Zhi-guo, LUO Yan. Asymptotic Stability for Impulsive Functional Differential Equations[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1234-1242. doi: 10.3879/j.issn.1000-0887.2009.10.011

脉冲泛函微分方程的渐近稳定性

doi: 10.3879/j.issn.1000-0887.2009.10.011
基金项目: 国家自然科学基金资助项目(10871063);湖南省教育厅(重点)科研基金资助项目(07A038)
详细信息
    作者简介:

    罗治国(1956- ),男,湖南湘潭人,教授,博士(联系人.Tel:+86-731-88872549;E-mail:luozg@hunnu.edu.cn)

  • 中图分类号: O175

Asymptotic Stability for Impulsive Functional Differential Equations

  • 摘要: 讨论了一类脉冲泛函微分方程的渐近稳定性.通过改进 Liapunov泛函的上界,利用Liapunov泛函第二方法和Jensen不等式,得到了一个一致稳定性定理和一个一致渐近稳定性定理,给出的例子说明了所得结果的优越性
  • [1] Lakshmikantham V , Bainov D D, Simeonov P S.Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,Sin,1989.
    [2] Bainov D D,Simenov P S.Systems With Impulse Effect: Stability Theory and Applications[M].Chichester:Ellis Horwood,1989.
    [3] Samoilenko A M,Perestyuk N A.Impulsive Differential Equations[M].Singapore:World Scientific,1995.
    [4] Shen J,Yan J.Razumikhin type stability theorems for impulsive functional differential equations[J].Nonlinear Anal,1998,33(5):519-531. doi: 10.1016/S0362-546X(97)00565-8
    [5] Liu X ,Shen J.Razumikhin type theorems on boundedness for impulsive functional differential equations[J].Dynamic Systems and Appl,2000,9(3):265-281.
    [6] Zhang Y,Sun J.Stability of impulsive functional differential equations[J].Nonlinear Analysis,2008,68 (12):3665-3678. doi: 10.1016/j.na.2007.04.009
    [7] Luo Z ,Shen J. New Razumikhin type theorems for impulsive functional differential equations[J]. Appl Math Comput,2002,125(2/3):375-386. doi: 10.1016/S0096-3003(00)00139-9
    [8] Liu X ,Ballinger G.Uniformly asymptotic stabilityof impulsive delay differential equations[J]. Computers Math Applic, 2001,41(7/8):903-915. doi: 10.1016/S0898-1221(00)00328-X
    [9] Luo Z, Shen J. Impulsive stabilization of functional differential equations with infinite delays[J]. Appl Math Letters,2003,16(5):695-701. doi: 10.1016/S0893-9659(03)00069-7
    [10] Luo Z,Shen J.Stability of impulsive functional differential equations via Liapunov functional[J].Appl Math Lett, 2009,22(2):163-169. doi: 10.1016/j.aml.2008.03.004
    [11] Shen J,Luo Z,Liu X.Impulsive stabilization of functional differential equations via Liapunov functionals[J], J Math Anal Appl,1999,240(1/5):1-15.
    [12] Luo Z,Shen J.Stability and boundedness for impulsive functional differential equations with infinite delays[J].Nonlinear Analysis,2001,46(4):475-493. doi: 10.1016/S0362-546X(00)00123-1
    [13] Stamova I M,Stamov G T. Lyapunov-Razumikhin method for impulsive functional differential equations and applications to the population dynamics[J]. J Comput Appl Math,2001,130 (1/2):163-171. doi: 10.1016/S0377-0427(99)00385-4
    [14] Ballinger G,Liu X.Existence and uniqueness results for impulsive delay differential equations[J]. Dynamic Continuous Discrete Impulse Systems,1999,5(1/4):579-591.
    [15] Becker L C ,Burton T A,Zhang S.Functional differential equations and Jensen′s inequality[J]. J Math Anal Appl,1989,138(1):137-156. doi: 10.1016/0022-247X(89)90325-9
    [16] Becker L C ,Burton T A.Jensen′s inequality and Liapunov′s direct method[J]. Cubo A Mathematical J,2004,6(3):65-87.
    [17] Natansoa I P.Theory of Functions of a Real Variable[M].Vol Ⅱ,New York:Ungar,1960.
  • 加载中
计量
  • 文章访问数:  1393
  • HTML全文浏览量:  114
  • PDF下载量:  717
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-01-21
  • 修回日期:  2009-08-18
  • 刊出日期:  2009-10-15

目录

    /

    返回文章
    返回