[1] |
Canuto C, Tabacco A, Urban K. The wavelet element method part I: construction and analysis[J]. Applied and Computational Harmonic Analysis, 1999, 6(1):1-52. doi: 10.1006/acha.1997.0242
|
[2] |
Canuto C, Tabacco A, Urban K. The wavelet element method part II: realization and additional feature in 2D and 3D[J]. Applied and Computational Harmonic Analysis, 2000, 8(2): 123-165. doi: 10.1006/acha.2000.0282
|
[3] |
Cohen A. Numerical Analysis of Wavelet Method[M]. Elsevier: Amsterdam, 2003, 20-29.
|
[4] |
周又和, 王记增, 郑晓静. 小波伽辽金有限元法在梁板结构中的应用[J]. 应用数学和力学, 1998, 19(8): 697-706.
|
[5] |
Chen X F, He Z J, Xiang J W, Li B. A dynamic multiscale lifting computation method using Daubechies wavelet[J]. Journal of Computational and Applied Mathematics, 2006, 188(2): 228-245. doi: 10.1016/j.cam.2005.04.015
|
[6] |
Xiang J W, Chen X F, He Z J, et al. The construction of 1D wavelet finite elements for structural analysis[J]. Computational Mechanics, 2007, 40(2): 325-339. doi: 10.1007/s00466-006-0102-5
|
[7] |
Xiang J W, Chen X F, He Z J, et al. A new wavelet-based thin plate element using B-spline wavelet on the interval[J]. Computational Mechanics, 2008, 41(2): 243-255.
|
[8] |
Xiang J W, Chen X F, Yang L F, et al. A class of wavelet-based flat shell elements using B-spline wavelet on the interval and its applications[J]. CMES-Computer Modeling in Engineering and Sciences, 2008, 23(1):1-12.
|
[9] |
梅树立, 陆启韶, 金俐,等. 偏微分方程的区间小波自适应精细积分法[J]. 应用数学和力学, 2005, 26(3): 364-371.
|
[10] |
金坚明, 薛鹏翔, 徐应祥,等. 具有紧支撑的非张量积形式二维小波有限元[J]. 应用数学和力学, 2006, 27(12): 1673-1686.
|
[11] |
贺英, 韩波. 流体饱和多孔隙介质波动方程小波有限差分法[J]. 应用数学和力学, 2008; 29(11): 1495-1504.
|
[12] |
Basu P K, Jorge A B, Badri S, et al. Higher-order modeling of continua by finite-element, boundary-element, Meshless, and wavelet methods[J]. Computers and Mathematics With Applications. 2003, 46(1): 15-33.
|
[13] |
Jia R Q, Liu S T. Wavelet bases of Hermite cubic splines on the interval[J]. Advances in Computational Mathematics, 2006, 25(1/3): 23-39. doi: 10.1007/s10444-003-7609-5
|
[14] |
Quak E, Weyrich N. Decomposition and reconstruction algorithms for spline wavelets on a bounded interval[J]. Applied and Computational Harmonic Analysis, 1994, 1(2): 217-231. doi: 10.1006/acha.1994.1009
|
[15] |
Dahmen W, Kurdila A, Oswald P. Multiscale Wavelet for Partial Differential Equations[M]. San Diego:Academic Press,1997, 23-27.
|
[16] |
Pavel K, Anath F, Pinhas Z, et al. Mechanically based models adaptive refinement for B-spline finite element[J]. International Journal for Numerical Methods in Engineering, 2003, 57(8):1145-1175. doi: 10.1002/nme.717
|