留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类四阶半线性方程的奇摄动解

莫嘉奇

莫嘉奇. 一类四阶半线性方程的奇摄动解[J]. 应用数学和力学, 2009, 30(11): 1369-1373. doi: 10.3879/j.issn.1000-0887.2009.11.011
引用本文: 莫嘉奇. 一类四阶半线性方程的奇摄动解[J]. 应用数学和力学, 2009, 30(11): 1369-1373. doi: 10.3879/j.issn.1000-0887.2009.11.011
MO Jia-qi. On a Class of Singular Perturbation Solution for Semilinear Equtions of Fourth Order[J]. Applied Mathematics and Mechanics, 2009, 30(11): 1369-1373. doi: 10.3879/j.issn.1000-0887.2009.11.011
Citation: MO Jia-qi. On a Class of Singular Perturbation Solution for Semilinear Equtions of Fourth Order[J]. Applied Mathematics and Mechanics, 2009, 30(11): 1369-1373. doi: 10.3879/j.issn.1000-0887.2009.11.011

一类四阶半线性方程的奇摄动解

doi: 10.3879/j.issn.1000-0887.2009.11.011
基金项目: 国家自然科学基金资助项目(40676016;40876010);中国科学院知识创新工程重要方向资助项目(KZCX2-YW-Q03-08);LASG国家重点实验室专项经费资助项目;上海市教育委员会E-研究院建设计划项目(E03004)资助课题
详细信息
  • 中图分类号: O175.14

On a Class of Singular Perturbation Solution for Semilinear Equtions of Fourth Order

  • 摘要: 讨论了一类四阶半线性方程奇摄动边值问题.利用上下解方法,研究了边值问题解的存在性和渐近性态.指出了在该文的情形下具有两参数的原奇摄动问题的解只有一个边界层
  • [1] Guarguaglini F R,Natalini R.Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena[J].Commun Partial Diff Equs,2007,32(2):163-189. doi: 10.1080/03605300500361438
    [2] Hovhannisyan G,Vulanovic R.Stability inequalities for one-dimensional singular perturbation problems[J].Nonlinear Stud,2008,15(4):297-322.
    [3] Abid I,Jieli M,Trabelsi N.Weak solutions of quasilinear biharmonic problems with positive,increasing and convex nonlinearities[J].Anal Appl Singap,2008,6(3):213-227. doi: 10.1142/S0219530508001134
    [4] Graef J R,Kong L.Solutions of second order multi-point boundary value problems[J].Math Proc Camb Philos Soc,2008,145(2):489-510.
    [5] Barbu L,Cosma E.Elliptic regularizations for the nonlinear heat equation[J].J Math Anal Appl,2009,351(2):392-399. doi: 10.1016/j.jmaa.2008.10.033
    [6] MO Jia-qi.A singularly perturbed nonlinear boundary value problem[J].J Math Anal Appl,1993,178(1):289-293. doi: 10.1006/jmaa.1993.1307
    [7] MO Jia-qi.Singular perturbation for a class of nonlinear reaction diffusion systems[J].Science in China,Ser A, 1989,32(11):1306-1315.
    [8] MO Jia-qi.A class of singularly perturbed differential-difference reaction diffusion equations[J].Adv Math,2009,38(2):227-230.
    [9] MO Jia-qi,LIN Wan-tao.Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J].J Sys Sci Complexity,2008,20(1):119-128.
    [10] MO Jia-qi,WANG Hui.Nonlinear singularly perturbed approximate solution for generalized Lotke-Volterra ecological model[J].Acta Ecologica Sinica,2007,27(10):4366-4370.
    [11] MO Jia-qi,ZHU Jiang,WANG Hui.Asymptotic behavior of the shock solution for a class of nonlinear equations[J].Progress in Natural Sci,2003,13(9):768-770. doi: 10.1080/10020070312331344400
    [12] MO Jia-qi.Approximate solution of homotopic mapping to solitary for generalized nonlinear KdV system[J].Chin Phys Lett,2009,26(1):010204-1-010204-4. doi: 10.1088/0256-307X/26/1/010204
    [13] MO Jia-qi.A variational iteration solving method for a class of generalized Boussinesq equations[J].Chin Phys Lett,2009,26(6):060202-1-060202-3. doi: 10.1088/0256-307X/26/6/060202
    [14] MO Jia-qi.Homotopic mapping solving method for gain fluency of laser pulse amplifier[J].Science in China,Ser G,2009,39(5):568-661.
    [15] MO Jia-qi,LIN Wan-tao,WANG Hui.Variational iteration solving method of a sea-air oscillator model for the ENSO[J].Prog Nat Sci,2007,17(2):230-232. doi: 10.1080/10020070612331343252
    [16] MO Jia-qi.A class of homotopic solving method for ENSO model[J].Acta Math Sci,2009,29(1):101-109.
    [17] de Jager E M,Jiang F R.The Theory of Singular Perturbation[M].Amsterdam:North- Holland Publishing Co,1996.
    [18] Howes F A.Differential inequalities and applications to nonlinear singular perturbation problems[J].J Differential Equations,1976,20(1):133-149. doi: 10.1016/0022-0396(76)90100-5
    [19] CHEN Li-hua,MO Jia-qi,LIU Shu-de.The singularly perturbed solution for nonlinear equations of fourth order with two parameters[J].J Shanghai Jiaotong Univ,2008,E-13,(4):509-512.
  • 加载中
计量
  • 文章访问数:  1814
  • HTML全文浏览量:  134
  • PDF下载量:  780
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-03
  • 修回日期:  2009-09-17
  • 刊出日期:  2009-11-15

目录

    /

    返回文章
    返回