Existence and Nonexistence of Positive Solutions of Semilinear Elliptic Equation With Inhomogeneous Strong Allee Effect
-
摘要: 研究一个定义在有界光滑区域上的半线性椭圆方程解的问题,这类问题是在对空间生物种群模型的研究中出现的,其中的增长函数具有强Allee效应而且是非齐次的〖CX4〗.〖CX〗用变分方法证得,在这个有界光滑区域的一个开集上,如果满足一定条件,那么对足够大的参数,方程至少有两个正解,同时也得到一些非存在性结果Abstract: A semilinear elliptic equation defined on a bounded smooth domain is studied. This type of problem arises from the studies of spatial ecology model, and the growth function in the equation was of strong Allee effect and inhom ogeneous. It was proved by variational methods that the equation has at least two positive solutions for a large parameter if it satisfies some appropriate conditions. Some nonexistence results were also proved.
-
Key words:
- semilinear equation /
- Allee effect /
- positive solutions /
- existence
-
[1] SHI Jun-ping,Shivaji Ratnasingham.Semilinear elliptic equations with generalized cubic nonlinearities[A].Discrete and Continuous Dynamical Systems[C].Proceedings of 5th AIMS International Conference on Dynamic Systems and Differential Equations,2005,798-805. [2] SHI Jun-ping,Shivaji Ratnasingham.Persistence in reaction diffusion models with weak Allee effect[J].Jour Math Biol,2006,52(6):807-829. doi: 10.1007/s00285-006-0373-7 [3] Allee W C.The Social Life of Animals[M].Boston:Beacon Press,1951,233. [4] Cantrell Robert Stephen,Cosner Chris.Spatial Ecology via Reaction-Diffusion Equations[M].West Sussex:Wiley,2003,411. [5] OUYANG Tian-cheng,SHI Jun-ping. Exact multiplicity of positive solutions for a class of semilinear problem[J].Jour Diff Equa,1998,146(1):121-156. doi: 10.1006/jdeq.1998.3414 [6] Dancer E N,Schmitt Klaus. On positive solution of semilinear elliptic equations[J].Proc Amer Math Soc,1987,101(3):445-452. doi: 10.1090/S0002-9939-1987-0908646-2 [7] Clément Ph,Sweers Guido. Existence and multiplicity results for a semilinear elliptic eigenvalue problem[J].Ann Scuola Norm Sup Pisa Cl Sci,1987,14(4):97-121. [8] 郭大钧. 非线性泛函分析[M]. 济南:山东科学技术出版社,1983,550. [9] Dancer E N,YAN Shu-sen. Construction of various types of solutions for an elliptic problem[J].Calc Var Partial Differential Equations,2004,20(1):93-118. doi: 10.1007/s00526-003-0229-6
计量
- 文章访问数: 1598
- HTML全文浏览量: 167
- PDF下载量: 684
- 被引次数: 0