留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类Schrodinger-Poisson型方程的稳定性

黄娟 张健 陈光淦

黄娟, 张健, 陈光淦. 一类Schrodinger-Poisson型方程的稳定性[J]. 应用数学和力学, 2009, 30(11): 1381-1386. doi: 10.3879/j.issn.1000-0887.2009.11.013
引用本文: 黄娟, 张健, 陈光淦. 一类Schrodinger-Poisson型方程的稳定性[J]. 应用数学和力学, 2009, 30(11): 1381-1386. doi: 10.3879/j.issn.1000-0887.2009.11.013
HUANG Juan, ZHANG Jian, CHEN Guan-gan. Stability of SchrLdinger-Poisson Type Equations[J]. Applied Mathematics and Mechanics, 2009, 30(11): 1381-1386. doi: 10.3879/j.issn.1000-0887.2009.11.013
Citation: HUANG Juan, ZHANG Jian, CHEN Guan-gan. Stability of SchrLdinger-Poisson Type Equations[J]. Applied Mathematics and Mechanics, 2009, 30(11): 1381-1386. doi: 10.3879/j.issn.1000-0887.2009.11.013

一类Schrodinger-Poisson型方程的稳定性

doi: 10.3879/j.issn.1000-0887.2009.11.013
基金项目: 国家自然科学基金资助项目(10771151;10901115);四川省教育厅(重点)科研基金资助项目(2006A063);四川省科技厅应用基础科研基金资助项目(07JY029-012)
详细信息
    作者简介:

    黄娟(1981- ),女,四川人,博士生(联系人.E-mail:huangjuanjunehuang@126.com).

  • 中图分类号: O175

Stability of SchrLdinger-Poisson Type Equations

  • 摘要: 运用变分法研究一类描述物理学中电磁波在原生质中传播过程的非线性Schrodinger-Poisson型方程.通过分析Hamilton性质和构造相应的变分问题,得到该系统基态的存在性.进而证明了该系统的基态是轨道稳定性
  • [1] Abdullaev F Kh.Dunamical chaos of solitons and nonlinear periodic waves[J].Phys Reports,1989,179(1):1-78. doi: 10.1016/0370-1573(89)90098-7
    [2] Gagliardo E.Proprieta di alcune classi di funzioni in piu varibili[J].Ricerche di Math,1958,7(1):102-137.
    [3] Gagliardo E.Ulteriori proprieta di alcune classi di funzioni in piu varibili[J].Ricerche di Math,1959,8(1):24-51.
    [4] Kuznetsov E A, Rubenchik A M,Zakharov V E.Soliton stability in plasmas and by drodynamics[J].Phys Reports,1986,142(3):103-165. doi: 10.1016/0370-1573(86)90016-5
    [5] Makhankov V G.Dynamics of classical solutions (in non-interable systems)[J].Phys Reports,1978,35(1):1-128. doi: 10.1016/0370-1573(78)90074-1
    [6] Zakharov V E.Collapse of Langmuir waves[J].Sov Phys JETP,1972,35(5):908-914.
    [7] GUO Bo-ling,YANG Lin-ge.The global solution and asymptotic behaviors for one class of nonlinear evolution equations[J].J Partial Diff Eqs,1997,10(3):232-246.
    [8] Fukuizumi R, Ohta M.Stability of standing waves for nonlinear Schrdinger equations with potentials[J].Differential and Integral Eqs,2003,16(1):111-128.
    [9] Goncalves Rebeiro J M.Instability of symmetric stationary states for some nonlinear Schrdinger equations with an external magnetic field[J].Ann Inst Henri Poincaré Physique Théorique,1991,54(4):403-433.
    [10] Grillakis M ,Shatah J, Strauss W A.Stability theory of solitary waves in the presence of symmetryⅠ[J].J Funct Anal,1987,74(1):160-197. doi: 10.1016/0022-1236(87)90044-9
    [11] Shatah J,Strauss W A.Instability of nonlinear bound states[J].Comm Math Phys,1985,100(2):173-190. doi: 10.1007/BF01212446
    [12] Tsutsumi Y,ZHANG Jian.Instability of optical solitons for two-wave interaction model in cubic nonlinear media[J].Advances in Mathematical Sciences and Applications ,1998,8(5):691-713.
    [13] WEI Yun-yun,CHEN Guang-gan.On the standing wave for aclass ofnonlinearSchrdinger equations[J].J Math Anal Appl,2008,337(2):1022-1030. doi: 10.1016/j.jmaa.2007.04.043
    [14] ZHANG Jian.Stability of attractive Bose-Einstein condensates[J].Journal of Statistical Physics,2000,101(3/4):731-746. doi: 10.1023/A:1026437923987
    [15] ZHANG Jian.Stability of standing waves for nonlinear Schrdinger equations with unbounded potentials[J].Z Angew Math Phys,2000,51(1):498-503. doi: 10.1007/PL00001512
    [16] ZHANG Jian.On the standing wave in coupled nonlinear Klein-Gordon equations[J].Math Mech Appl Sci,2003,26(1):11-25. doi: 10.1002/mma.340
    [17] ZHANG Jian.Sharp threshold for global existence and blowup in nonlinear Schrdinger equation with harmonic potential[J].Commun Partial Diff Eqs,2005,30(10/12):1429-1443. doi: 10.1080/03605300500299539
    [18] Strauss W A.Existence of solitary waves in higher dimensions[J].Comm Math Phys,1977,55(2):149-162. doi: 10.1007/BF01626517
    [19] Kwong M K.Uniqueness of positive solutions of Δu-u+up=0in RN [J].Arch Rat Mech Anal,1989,105(3):243-266.
    [20] Cazenave T, Lions P L.Orbital stability of standing wavesforsomenonlinearSchrdinger equations[J].Comm Math Phys,1982,85(4):549-561. doi: 10.1007/BF01403504
    [21] Weinstein M I.Nonlinear Schrdinger equations and sharp interpolations estimates[J].Commu Math Phys,1983,87(4):567-576. doi: 10.1007/BF01208265
    [22] Berestycki H, Cazenave T.Instabilité des états stationnaires dans lesé quations de Schrdinger et de Klein-Gordon non linarires[J].C R Acad Sci Paris,Seire Ⅰ,1981,293(1):489-492.
    [23] Struwe M.Varitional Methods[M].Berlin,Heidelberg,New York:Springer-Verlag,1996.
  • 加载中
计量
  • 文章访问数:  1352
  • HTML全文浏览量:  93
  • PDF下载量:  881
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-01-02
  • 修回日期:  2009-08-19
  • 刊出日期:  2009-11-15

目录

    /

    返回文章
    返回