留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加热下分数阶广义二阶流体的Rayleigh-Stokes问题的一种有效数值方法

庄平辉 刘青霞

庄平辉, 刘青霞. 加热下分数阶广义二阶流体的Rayleigh-Stokes问题的一种有效数值方法[J]. 应用数学和力学, 2009, 30(12): 1440-1452. doi: 10.3879/j.issn.1000-0887.2009.12.005
引用本文: 庄平辉, 刘青霞. 加热下分数阶广义二阶流体的Rayleigh-Stokes问题的一种有效数值方法[J]. 应用数学和力学, 2009, 30(12): 1440-1452. doi: 10.3879/j.issn.1000-0887.2009.12.005
ZHUANG Ping-hui, LIU Qing-xia. An Effective Numerical Method of the Rayleigh-Stokes Problem for a Heated Generalized Second Grade Fluid With Fractional Derivative[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1440-1452. doi: 10.3879/j.issn.1000-0887.2009.12.005
Citation: ZHUANG Ping-hui, LIU Qing-xia. An Effective Numerical Method of the Rayleigh-Stokes Problem for a Heated Generalized Second Grade Fluid With Fractional Derivative[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1440-1452. doi: 10.3879/j.issn.1000-0887.2009.12.005

加热下分数阶广义二阶流体的Rayleigh-Stokes问题的一种有效数值方法

doi: 10.3879/j.issn.1000-0887.2009.12.005
详细信息
    作者简介:

    庄平辉(1963- ),男,副教授,博士(联系人.Tel:+86-592-2580659;E-mail:zxy1104@xmu.edu.cn).

  • 中图分类号: O35;O24

An Effective Numerical Method of the Rayleigh-Stokes Problem for a Heated Generalized Second Grade Fluid With Fractional Derivative

  • 摘要: 考虑加热下分数阶广义二阶流体的Rayleigh-Stokes问题(RSP-HGSGF),提出了一种逼近有界区域内RSP-HGSGF的有效数值方法.并且讨论了所提出方法的稳定性和收敛性.最后,利用数值例子体现数值方法的有效性.
  • [1] Rajagopal K R.On the decay of vortices in a second grade fluid[J].Meccanica,1980,15(3):185-188. doi: 10.1007/BF02128929
    [2] Rajagopal K R,Gupta A S.On a class of exact solutions to the equations of motion of a second grade fluid[J].International Journal of Engineering Science,1981,19(7):1009-1014. doi: 10.1016/0020-7225(81)90135-X
    [3] Rajagopal K R.A note on unsteady unidirectional flows of a non-Newtonian fluid[J].Int J Non-Linear Mech,1982,17(5/6):369-373. doi: 10.1016/0020-7462(82)90006-3
    [4] Bandelli R,Rajagopal K R.Start-up flows of second grade fluids in domains with one finite dimension[J].Int J Non-Linear Mech,1995,30(6):817-839. doi: 10.1016/0020-7462(95)00035-6
    [5] Fetecau C,Zierep J.On a class of exact solutions of the equations of motion of a second grade fluid[J].Acta Mech, 2001,150(1/2):135-138. doi: 10.1007/BF01178551
    [6] Taipel I.The impulsive motion of a flat plate in a visco-elastic fluid[J].Acta Mech,1981,39:277-279. doi: 10.1007/BF01170349
    [7] Zierep J,Fetecau C.Energetic balance for the Rayleigh-Stokes problem of a Maxwell fluid[J].International Journal of Engineering Science,2007,45(2/8):617-627. doi: 10.1016/j.ijengsci.2007.04.015
    [8] SHEN Fang,TAN Wen-chang,ZHAO Yao-hua,et al. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model[J].Nonlinear Anaylysis:Real World Applications, 2006,7(5):1072-1080. doi: 10.1016/j.nonrwa.2005.09.007
    [9] XUE Chang-feng,NIE Jun-xiang.Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space[J].Applied Mathematical Modelling,2009,33(1):524-531. doi: 10.1016/j.apm.2007.11.015
    [10] Liu F,Anh Y,Turner I.Numerical solution of the space fractional Fokker-Planck equation[J].J Comp Appl Math,2004,166(1):209-219. doi: 10.1016/j.cam.2003.09.028
    [11] Liu F,Anh V,Turner I,et al.Numerical solution for the solute transport in fractal porous media[J].ANZIAM J(E),2004,45:461-473.
    [12] Shen S,Liu F.Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends[J].ANZIAM J(E),2004,46:871-887.
    [13] Roop J P.Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in R2[J].J Comp Appl Math, 2006,193(1):243-268. doi: 10.1016/j.cam.2005.06.005
    [14] CHEN Chang-ming,Liu F,Anh V.Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives[J].Applied Mathematics and Computation,2008,204(1):340-351. doi: 10.1016/j.amc.2008.06.052
    [15] CHEN Chang-ming,Liu F,Anh V.A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative[J].J Comp Appl Math,2009,42(2):333-339.
    [16] WU Chun-hong.Numerical solution for Stokes' first problem for a heated generalized second grade fluid with fractional derivative[J].Appl Nume Math,2009,59(10):2571-2583. doi: 10.1016/j.apnum.2009.05.009
    [17] Samko S G,Kilbas A A,Marichev O I.Fractional Integrals and Derivatives:Theory and Applications[M].New York,NY:Gordon and Breach Science Publishers,1993.
  • 加载中
计量
  • 文章访问数:  1582
  • HTML全文浏览量:  191
  • PDF下载量:  760
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-20
  • 修回日期:  2009-10-10
  • 刊出日期:  2009-12-15

目录

    /

    返回文章
    返回