留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微观方法对液态铝泡沫宏观析液过程的数值模拟研究

李科 解茂昭 刘红

李科, 解茂昭, 刘红. 基于微观方法对液态铝泡沫宏观析液过程的数值模拟研究[J]. 应用数学和力学, 2009, 30(12): 1453-1462. doi: 10.3879/j.issn.1000-0887.2009.12.006
引用本文: 李科, 解茂昭, 刘红. 基于微观方法对液态铝泡沫宏观析液过程的数值模拟研究[J]. 应用数学和力学, 2009, 30(12): 1453-1462. doi: 10.3879/j.issn.1000-0887.2009.12.006
LI Ke, XIE Mao-zhao, LIU Hong. Microscopical and Macroscopical Numerical Study on the Drainage Process in Fabricating Foamed Aluminum[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1453-1462. doi: 10.3879/j.issn.1000-0887.2009.12.006
Citation: LI Ke, XIE Mao-zhao, LIU Hong. Microscopical and Macroscopical Numerical Study on the Drainage Process in Fabricating Foamed Aluminum[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1453-1462. doi: 10.3879/j.issn.1000-0887.2009.12.006

基于微观方法对液态铝泡沫宏观析液过程的数值模拟研究

doi: 10.3879/j.issn.1000-0887.2009.12.006
基金项目: 国家自然科学基金资助项目(50876017)
详细信息
    作者简介:

    李科(1981- ),男,内蒙古鄂尔多斯人,副教授,博士(联系人.E-mail:like16615.student@sina.com);解茂昭(1944- ),男,成都人,教授,博士生导师(E-mail:xmz@dlut.edu.cn).

  • 中图分类号: O368;TK121

Microscopical and Macroscopical Numerical Study on the Drainage Process in Fabricating Foamed Aluminum

  • 摘要: 通过微元管内流动模型,研究了液态金属熔体泡沫体内单条Plateau边界内析液过程中的速度场.分析了不同Newton表面粘度,即不同的气液界面运动能力(无量纲参数M)下,Plateau边界内速度的分布.结果显示:在相同的气液界面运动能力和曲率半径条件下,泡沫体内固壁处Plateau边界内速度约是内部Plateau边界内速度的6~8倍,从而解释了不同容器内泡沫体析液速率的差异现象;发现M存在1个临界值,在此值的两边,液膜厚度与曲率半径的比值对Plateau边界内速度的影响呈现出相反的趋势.结合多尺度方法,进而利用微观计算结果建立了泡沫体的整体宏观析液模型,将模型计算结果和经典析液方程计算结果及实验值作了比较,结果表明:该文模型计算结果与实验值在泡沫层上部、中部吻合较好,M值和气泡大小对析液过程有显著影响.
  • [1] Lehmhus D,Banhart J,Rodriguez-Perez M A.Adaptation of aluminium foam properties by means of precipitation hardening[J].Materials Science and Technology,2002,18(5):474-479. doi: 10.1179/026708302225002182
    [2] Lehmhus D,Banhart J.Properties of heat-treated aluminum foams[J].Materials Science and Engineering A,2003,349(2):98-110. doi: 10.1016/S0921-5093(02)00582-8
    [3] Paul E C,Kevin D C.Design of experiments for thermal characterization of metallic foam[J].Journal of Thermophysics and Heat Transfer,2005,19(3):367-374. doi: 10.2514/1.6725
    [4] Gergely V,Clyne T W.Drainage in standing liquid metal foams:modeling and experimental observations[J].Acta Material,2004,52(10):3047-3058. doi: 10.1016/j.actamat.2004.03.007
    [5] Cox S J,Weair D,Hutzler S,et al.Applications and generalizations of the foam drainage equation[J].The Royal Society,2000,456(2002):2441-2464. doi: 10.1098/rspa.2000.0620
    [6] Koehler S A,Hilgenfeldt S,Stone H A.A generalized view of foam drainage:experiment and theory[J].Langmuir,2000,16(15):6327-6341. doi: 10.1021/la9913147
    [7] Durand M,Langevin D.Physicochemical approach to the theory of foam drainage[J].Eur Phys J E:Soft Matter and Biological Physics,2002,7(1):35-41. doi: 10.1007/s10189-002-8215-0
    [8] Hutzler S,Cox S J,Wang G.Foam drainage in two dimensions[J].Colloids and Surfaces A:Physicochem Eng Aspects,2005,263(3):178-183. doi: 10.1016/j.colsurfa.2005.02.001
    [9] Grassia P,Neethling S J,Cervantes C,et al.The growth,drainage and bursting of foams[J].Colloids and Surfaces A:Physicochem Eng Aspects,2006,274(3):110-124. doi: 10.1016/j.colsurfa.2005.08.040
    [10] Leonard R A,Lemlich R.A study of interstitial liquid flow in foam[J].AIChE J,1965,11(1):18-24. doi: 10.1002/aic.690110108
    [11] Nguyen A V.Liquid drainage in single Plateau borders of foam[J].J Colloid Interface Sci,2002,249(1):194-199. doi: 10.1006/jcis.2001.8176
    [12] Koehler S A,Hilgenfeldt S,Stone H A.Foam drainage on the micro scale Ⅰ:modeling flow through single Plateau borders[J].Journal of Colloid and Interface Science,2004,276(2):439-449. doi: 10.1016/j.jcis.2003.12.060
    [13] Koehler S A,Hilgenfeldt S,Stone H A.Foam drainage on the micro scale Ⅱ:imaging flow through single Plateau borders[J].Journal of Colloid and Interface Science,2004,276(2):420-438. doi: 10.1016/j.jcis.2003.12.061
    [14] Li J,Zhang J,Ge W,et al.Multi-scale methodology for complex systems[J].Chemical Engineering Science,2004,59(8):1687-1700. doi: 10.1016/j.ces.2004.01.025
    [15] Stephan A K,Hilgenfeldt S,Eric R W,et al.Drainage of single Plateau borders:direct observation of rigid and mobile interfaces[J].Physical Review E,2000,66(4):040601-1-4.
    [16] Magrabi S A,Dlugogorski B Z,Jameson G J.A comparative study of drainage characteristics in AFFF and FFFP compressed-air fire-fighting foams[J].Fire Safety Journal,2002,37(1):21-52. doi: 10.1016/S0379-7112(01)00024-8
    [17] WANG Ze-bin,Narsimhan G.Model for Plateau border drainage of power-law fluid with mobile interface and its application to foam drainage[J].Journal of Colloid and Interface Science,2006,300(1),327-337.
    [18] Stone H A,Koehler S A,Hilgenfeldt S,et al.Perspectives on foam drainage and the influence of interfacial rheology[J].Journal of Physics:Condensed Matter,2003,15(1):S283-S290.
    [19] Saint-Jalmesa A,Zhang Y,Langevin D.Quantitative description of foam drainage:transitions with surface mobility[J].The European Physical Journal E:Soft Matter and Biological Physics,2004,15(1):53-60. doi: 10.1140/epje/i2004-10036-x
    [20] Neethling S J,Lee H T,Grassia P.The growth,drainage and breakdown of foams[J].Colloids and Surfaces A:Physicochem Eng Aspects,2005,263(3):184-196. doi: 10.1016/j.colsurfa.2004.12.014
    [21] Matzke E B.The three-dimension shape of bubbles in foam—an analysis of the role of surface forces in three-dimensional cell shape determination[J].Am J Botany,1946,33(1):281-289.
    [22] Brunke O,Odenbach S.In situ observation and numerical calculations of the evolution of metallic foams[J].J Phys:Condens Matter,2006,18(28):6493-6506. doi: 10.1088/0953-8984/18/28/005
    [23] Shen H,Oppenheimer S M,Dunand D C,et al.Numerical modeling of pore size and distribution in foamed titanium[J].Mechanics of Materials,2006,38(10),933-944.
    [24] 黄晋,孙其诚.液态泡沫渗流的机理研究进展[J],力学进展,2007,37(2):269-278.
  • 加载中
计量
  • 文章访问数:  1249
  • HTML全文浏览量:  118
  • PDF下载量:  743
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-02-17
  • 修回日期:  2009-11-11
  • 刊出日期:  2009-12-15

目录

    /

    返回文章
    返回