留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直观随机赋范空间中三次泛函方程的稳定性

张石生 J·M·拉斯尔斯 R·沙达提

张石生, J·M·拉斯尔斯, R·沙达提. 直观随机赋范空间中三次泛函方程的稳定性[J]. 应用数学和力学, 2010, 31(1): 19-25. doi: 10.3879/j.issn.1000-0887.2010.01.003
引用本文: 张石生, J·M·拉斯尔斯, R·沙达提. 直观随机赋范空间中三次泛函方程的稳定性[J]. 应用数学和力学, 2010, 31(1): 19-25. doi: 10.3879/j.issn.1000-0887.2010.01.003
ZHANG Shi-sheng, John Michael Rassias, Reza Saadati. Stability of the Cubic Functional Equation in Intuitionistic Random Normed Spaces[J]. Applied Mathematics and Mechanics, 2010, 31(1): 19-25. doi: 10.3879/j.issn.1000-0887.2010.01.003
Citation: ZHANG Shi-sheng, John Michael Rassias, Reza Saadati. Stability of the Cubic Functional Equation in Intuitionistic Random Normed Spaces[J]. Applied Mathematics and Mechanics, 2010, 31(1): 19-25. doi: 10.3879/j.issn.1000-0887.2010.01.003

直观随机赋范空间中三次泛函方程的稳定性

doi: 10.3879/j.issn.1000-0887.2010.01.003
详细信息
    作者简介:

    张石生(1934- ),男,云南曲靖人,教授(E-mail:changss@yahoo.cn);Reza Saadati(联系人.E-mail:rsaadat@ieml.cc).

  • 中图分类号: O177.91

Stability of the Cubic Functional Equation in Intuitionistic Random Normed Spaces

  • 摘要: 先引入直观随机赋范空间的概念.然后,借助这一概念,然后对任意的三角范数在该空间的框架下,研究了三次泛函方程的稳定性.另外,还介绍了随机空间理论、直观空间理论及泛函方程理论间的密切关系.
  • [1] Ulam S M. Problems in Modern Mathematics[M].Chapter VI, Science Editions.New York:Wiley,1964.
    [2] Hyers D H. On the stability of the linear functional equation[J].Proc Nat Acad Sci,1941,27(4):222-224. doi: 10.1073/pnas.27.4.222
    [3] Aoki T. On the stability of the linear transformation in Banach spaces[J]. J Math Soc Japan,1950,2:64-66. doi: 10.2969/jmsj/00210064
    [4] Rassias Th M. On the stability of the linear mapping in Banach spaces[J]. Proc Amer Math Soc,1978,72(2):297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [5] Baak C,Moslehian M S. On the stability of J*-homomorphisms[J]. Nonlinear Anal -TMA,2005 ,63(1):42-48.
    [6] Chudziak J,Tabor J. Generalized pexider equation on a restricted domain[J]. J Math Psychology,2008,52(6):389-392. doi: 10.1016/j.jmp.2008.04.002
    [7] Czerwik S. Functional Equations and Inequalities in Several Variables[M].River Edge,NJ:World Scientific,2002.
    [8] Hyers D H,Isac G,Rassias Th M. Stability of Functional Equations in Several Variables[M]. Basel:Birkhuser,1998.
    [9] Jung S M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis[M]. Palm Harbor:Hadronic Press,2001.
    [10] Rassias Th M. On the stability of functional equations and a problem of Ulam[J].Acta Appl Math ,2000,62(1):23-130. doi: 10.1023/A:1006499223572
    [11] Rassias Th M. Functional Equations,Inequalities and Applications[M]. Dordrecht,Boston,London:Kluwer Academic Publishers,2003.
    [12] Jun K W,Kim H M. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation[J]. J Math Anal Appl,2002,274(2):867-878. doi: 10.1016/S0022-247X(02)00415-8
    [13] Jun K W,Kim H M,Chang I S. On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation[J]. J Comput Anal Appl ,2005,7(1):21-33.
    [14] Mirmostafaee M,Mirzavaziri M,Moslehian M S. Fuzzy stability of the Jensen functional equation[J]. Fuzzy Sets and Systems,2008,159(6):730-738. doi: 10.1016/j.fss.2007.07.011
    [15] Mirzavaziri M,Moslehian M S. A fixed point approach to stability of a quadratic equation[J]. Bull Braz Math Soc,2006,37(3):361-376. doi: 10.1007/s00574-006-0016-z
    [16] Alsina C. On the stability of a functional equation arising in probabilistic normed spaces[J]. General Inequalities,1987,5:263-271.
    [17] Mihe D,Radu V. On the stability of the additive Cauchy functional equation in random normed spaces[J]. J Math Anal Appl,2008,343(1):567-572. doi: 10.1016/j.jmaa.2008.01.100
    [18] Mihe D,Saadati R,Vaezpour S M. The stability of the quadratic functional equation in random normed spaces[J]. Acta Appl Math.DOI: 10.1007/s10440-009-9476-7.
    [19] Baktash E,Cho Y J,Jalili M,et al. On the stability of cubic mappings and quadratic mappings in random normed spaces[J]. J Inequal Appl,2008.Article ID 902187.
    [20] Chang S S,Cho Y J,Kang S M.Nonlinear Operator Theory in Probabilistic Metric Spaces[M]. New York:Nova Science Publishers,Inc,2001.
    [21] Hadic′ O,Pap E. Fixed Point Theory in PM-Spaces[M]. Amsterdam,Holland:Kluwer Academic Publishers,2001.
    [22] 库图苏 S,图纳 A,雅库特 A T.直觉Menger空间中的广义压缩映射原理及其在微分方程中的应用[J].应用数学和力学,2007,28(6):713- 723.
    [23] Schweizer B,Sklar A. Probabilistic Metric Spaces[M].New York:Elsevier,North Holand,1983.
    [24] erstnev A N. On the notion of a random normed space[J].Dokl Akad Nauk SSSR,1963,149(2):280-283.
    [25] Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1986,20(1):87-96. doi: 10.1016/S0165-0114(86)80034-3
    [26] Deschrijver G,Kerre E E. On the relationship between some extensions of fuzzy set theory[J]. Fuzzy Sets and Systems,2003,23(2):227-235.
  • 加载中
计量
  • 文章访问数:  1595
  • HTML全文浏览量:  152
  • PDF下载量:  832
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-06
  • 修回日期:  2009-11-26
  • 刊出日期:  2010-01-15

目录

    /

    返回文章
    返回