留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多重胞元和规则多重分形

殷雅俊 李颖 杨帆 范钦珊

殷雅俊, 李颖, 杨帆, 范钦珊. 多重胞元和规则多重分形[J]. 应用数学和力学, 2010, 31(1): 51-60. doi: 10.3879/j.issn.1000-0887.2010.01.006
引用本文: 殷雅俊, 李颖, 杨帆, 范钦珊. 多重胞元和规则多重分形[J]. 应用数学和力学, 2010, 31(1): 51-60. doi: 10.3879/j.issn.1000-0887.2010.01.006
YIN Ya-jun, LI Ying, YANG Fan, FAN Qin-shan. Multiple Cell Elements and Regular Multifractals[J]. Applied Mathematics and Mechanics, 2010, 31(1): 51-60. doi: 10.3879/j.issn.1000-0887.2010.01.006
Citation: YIN Ya-jun, LI Ying, YANG Fan, FAN Qin-shan. Multiple Cell Elements and Regular Multifractals[J]. Applied Mathematics and Mechanics, 2010, 31(1): 51-60. doi: 10.3879/j.issn.1000-0887.2010.01.006

多重胞元和规则多重分形

doi: 10.3879/j.issn.1000-0887.2010.01.006
基金项目: 国家自然科学基金资助项目(10872114);江苏省自然科学基金资助项目(BK2008370)
详细信息
    作者简介:

    殷雅俊(1964- ),男,河南人,教授,博士,博士生导师(联系人.Tel:+86-10-62795536;E-mail:yiny@jtsinghua.edu.cn).

  • 中图分类号: Q811.6;O184

Multiple Cell Elements and Regular Multifractals

  • 摘要: 以超级分形纤维和双重分形纤维的研究结果为基础,达成了如下目标:首先,归纳、抽象出了多重胞元概念;其次,基于多重胞元概念,证实:具有严格自相似性的规则多重分形,不仅是可构造的,而且其构造模式具有普遍性;再者,通过分析构造模式,发现:任何规则多重分形,都可以在多重胞元意义下,被精确地等价成具有多重精细结构的广义单重分形.而基于这种等价性,单重分形维数公式就能够推广至规则多重分形维数公式,单重分形几何就能够推广至规则多重分形几何;最后,借助规则多重分形,构造了几种黄金分形.
  • [1] YIN Ya-jun, ZHANG Tong, YANG Fan, et al. Geometric conditions for fractal super carbon nanotubes with strict self-similarities [J]. Chaos, Solitons and Fractals, 2008, 37(5): 1257-1266. doi: 10.1016/j.chaos.2008.01.005
    [2] YIN Ya-jun, YANG Fan, ZHANG Tong, et al. Growth condition and growth limit for fractal super fibers and fractal super tubes [J]. International Journal of Nonlinear Sciences and Numerical Simulations, 2008, 9(1): 96-102.
    [3] YIN Ya-jun, YANG Fan, FAN Qin-shan, et al. Cell elements, growth modes and topology  ̄evolutions of fractal supper fibers [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(1): 1-12. doi: 10.1515/IJNSNS.2009.10.1.1
    [4] YIN Ya-jun, YANG Fan, FAN Qin-shan. Isologous fractal super fibers or fractal super lattices [J]. International Journal of Electrospun Nanofibers and Applications, 2008, 2(3): 193-201.
    [5] FAN Jie, LIU Jun-fang, HE Ji-huan. Hierarchy of wool fibers and fractal dimensions [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2008, 9(3): 293-296.
    [6] HE Ji-huan, REN Zhong-fu, FAN Jie, et al. Hierarchy of wool fibers and its interpretation using E-infinity theory [J]. Chaos, Solitons and Fractals, 2009, 41(4):1839-1841. doi: 10.1016/j.chaos.2008.07.035
    [7] 殷雅俊,杨帆,李颖,等.从毛发纤维中抽象出的分形几何与拓扑 [J].应用数学和力学, 2009, 30(8): 919-926.
    [8] 黄立基,丁菊仁. 多标度分形理论及进展 [J].物理学进展,1991, 11(3): 69-330.
    [9] Mandelbrot B B. On the intermittent free turbulence [C]Weber E.Proc Symp Turbulence of Fluid and Plasma . New York: Interscience, 1969:483-492.
    [10] Grassberger P. Generalized dimensions of strange attractors [J]. Physics Letters A, 1983, 97(6): 227-230. doi: 10.1016/0375-9601(83)90753-3
    [11] Hentschel H, Procaccia I.The infinite number of generalized dimensions of fractals and strange attractors [J]. Physica D, 1983, 8(3): 435-444. doi: 10.1016/0167-2789(83)90235-X
    [12] Frisch U, Parisi G.On the singularity structure of fully developed turbulence [C] Ghil M, Benzi R, Parisi G. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Amsterdam: North-Holland, 1985:84-87.
    [13] Benzi R, Paladin G, Parisi G, et al.On the multifractal nature of fully developed turbulence and chaotic systems [J]. J Phys A, 1984, 17(18): 3521-3531. doi: 10.1088/0305-4470/17/18/021
    [14] Helsey T, Jensen M H, Kadanoff L P,et al.Fractal measures and their singularities: the characterization of strange sets [J]. Phys Rev A, 1986, 33(2): 1141-1151. doi: 10.1103/PhysRevA.33.1141
    [15] Bensimon D, Jensen M H, Kadanoff L P.Renormalization-group analysis of the global structure of the period-doubling attractor [J]. Phys Rev A, 1986, 33(5): 3622-3624. doi: 10.1103/PhysRevA.33.3622
    [16] Feigenbaum M J, Jensen M H, Procaccia I I. Time ordering and the thermodynamics of strange sets: theory and experimental tests [J]. Phys Rev Lett, 1986, 57(13): 1503-1506. doi: 10.1103/PhysRevLett.57.1503
    [17] Feigenbaum M.Some characterizations of strange sets [J]. J Stat Phys, 1987, 46(5/6): 919-925. doi: 10.1007/BF01011148
    [18] 成令忠,冯京生,冯子强,等.组织学彩色图鉴[M].北京:人民卫生出版社,2000.
    [19] 周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性(Ⅰ):经典Renyi定义法[J]. 华东理工大学学报,2000, 26(4): 385-389.
    [20] 周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性(Ⅱ):配分函数法 [J]. 华东理工大学学报,2000, 26(4): 390-395.
  • 加载中
计量
  • 文章访问数:  1368
  • HTML全文浏览量:  143
  • PDF下载量:  884
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-09
  • 修回日期:  2009-11-10
  • 刊出日期:  2010-01-15

目录

    /

    返回文章
    返回