留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有非单调摩擦热弹性接触问题的有限元法

I·谢斯塔克 B·S·乔凡诺维克

I·谢斯塔克, B·S·乔凡诺维克. 具有非单调摩擦热弹性接触问题的有限元法[J]. 应用数学和力学, 2010, 31(1): 71-80. doi: 10.3879/j.issn.1000-0887.2010.01.008
引用本文: I·谢斯塔克, B·S·乔凡诺维克. 具有非单调摩擦热弹性接触问题的有限元法[J]. 应用数学和力学, 2010, 31(1): 71-80. doi: 10.3879/j.issn.1000-0887.2010.01.008
Ivan Šestak, Bo>>ko S. Jovanović. Approximation of Thermoelasticity Contact Problem With Nonmonotone Friction[J]. Applied Mathematics and Mechanics, 2010, 31(1): 71-80. doi: 10.3879/j.issn.1000-0887.2010.01.008
Citation: Ivan Šestak, Bo>>ko S. Jovanović. Approximation of Thermoelasticity Contact Problem With Nonmonotone Friction[J]. Applied Mathematics and Mechanics, 2010, 31(1): 71-80. doi: 10.3879/j.issn.1000-0887.2010.01.008

具有非单调摩擦热弹性接触问题的有限元法

doi: 10.3879/j.issn.1000-0887.2010.01.008
基金项目: 塞尔维亚共和国科学部资助项目(144005)
详细信息
  • 中图分类号: O176;O343.3;O241.82

Approximation of Thermoelasticity Contact Problem With Nonmonotone Friction

  • 摘要: 给出了一个变形体和刚性基础之间用双边摩擦表达其接触性质的、静态热弹性问题的方程式及其近似解法.以非单调、多值性表示该摩擦定律.忽略了问题的耦合效应,则问题的传热部分与弹性部分各自独立处理.位移矢量公式化为非凸的次静态问题,用局部Lipschitz连续函数来表示变形体的总势能.用有限单元法近似求解全部问题.
  • [1] Panagiotopoulos P D.Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions[M]. Boston, Basel, Stuttgart: Birkhuser, 1985.
    [2] Panagiotopoulos P D.Hemivariational Inequalities: Applications in Mechanics and Engineering[M]. Berlin, Heidelberg, New York: Springer, 1993.
    [3] Denkowski Z, Migórski S. A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact[J].Nonlinear Analysis, 2005, 60(8): 1415-1441. doi: 10.1016/j.na.2004.11.004
    [4] Goeleven D, Motreanu D, Dumont Y,et al.Variational and Hemivariational Inequalities. Theory, Methods and Applications, Volume Ⅰ: Unilateral Analysis and Unilateral Mechanics[M]. Boston, Dordrecht, London: Kluwer, 2003.
    [5] Goeleven D, Motreanu D.Variational and Hemivariational Inequalities. Theory, Methods and Applications, Volume Ⅱ: Unilateral Problems[M]. Dordrecht, London: Kluwer, 2003.
    [6] Naniewicz Z, Panagiotopoulos P D.Mathematical Theory of Hemivariational Inequalities and Applications[M]. New York, Basel, Hong Kong: Marcel Dekker, 1995.
    [7] Haslinger J, Miettinen M, Panagiotopoulos P D.Finite Element Method for Hemivariational Inequalities. Nonconvex Optimization and Its Applications[M].Vol 35, Dordrecht: Kluwer, 1999.
    [8] Baniotopoulos C C, Haslinger J, Morávková Z. Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities[J].Appl Math, 2005, 50(1): 1-25. doi: 10.1007/s10492-005-0001-7
    [9] Miettinen M, Haslinger J. Approximation of nonmonotone multivalued differential inclusions[J].IMA J Numer Anal, 1995, 15(4): 475-503. doi: 10.1093/imanum/15.4.475
    [10] Miettinen M, Mkel M M, Haslinger J. On numerical solution of hemivariational inequalities by nonsmooth optimization methods[J].J Global Optimization, 1995, 6(4): 401-425. doi: 10.1007/BF01100086
    [11] Miettinen M, Haslinger J. Finite element approximation of vector-valued hemivariational problems[J].J Global Optimization, 1997, 10(1): 17-35. doi: 10.1023/A:1008234502169
    [12] Lukan L, Vlcˇek J. A bundle-Newton method for nonsmooth unconstrained minimization[J].Math Prog, 1998, 83(1/3): 373-391.
    [13] Baniotopoulos C C, Haslinger J, Morávková Z.Contact problems with nonmonotone friction: discretization and numerical realization[J].Comput Mech, 2007, 40(1): 157-165. doi: 10.1007/s00466-006-0092-3
    [14] Adams R S. Sobolev Spaces.Pure and Applied Mathematics[M].Vol 65.New York,London: Academic Press, 1975.
    [15] Kufner A, John O, Fucˇik S.Function Spaces[M]. Leyden: Noordhoff International Publishing and Prague: Academia, 1977.
    [16] Necˇas J.Les Méthodes Directes en Théorie des quations Elliptiques[M]. Paris: Masson, 1967.
    [17] Clarke F H.Optimization and Nonsmooth Analysis[M]. New York, Chichester, Brisbane, Toronto and Singapore: Wiley, 1983.
    [18] Ciarlet P G.The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland, 1978.
    [19] Glowinski R, Lions J L. Trémoliéres R.Numerical Analysis of Variational Inequalities. Series in Mathematics and Applications[M]. Vol 8. Amsterdam: North-Holland, 1981.
  • 加载中
计量
  • 文章访问数:  1852
  • HTML全文浏览量:  152
  • PDF下载量:  816
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-29
  • 修回日期:  2009-10-17
  • 刊出日期:  2010-01-15

目录

    /

    返回文章
    返回