留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GMRES算法的弹性结构强耦合小变形流激振动分析

张立翔 郭亚昆 张洪明

张立翔, 郭亚昆, 张洪明. 基于GMRES算法的弹性结构强耦合小变形流激振动分析[J]. 应用数学和力学, 2010, 31(1): 81-90. doi: 10.3879/j.issn.1000-0887.2010.01.009
引用本文: 张立翔, 郭亚昆, 张洪明. 基于GMRES算法的弹性结构强耦合小变形流激振动分析[J]. 应用数学和力学, 2010, 31(1): 81-90. doi: 10.3879/j.issn.1000-0887.2010.01.009
ZHANG Li-xiang, GUO Ya-kun, ZHANG Hong-ming. Analysis of Fully Coupled Flow-Induced Vibration of Structure Under Small Deformation With GMRES[J]. Applied Mathematics and Mechanics, 2010, 31(1): 81-90. doi: 10.3879/j.issn.1000-0887.2010.01.009
Citation: ZHANG Li-xiang, GUO Ya-kun, ZHANG Hong-ming. Analysis of Fully Coupled Flow-Induced Vibration of Structure Under Small Deformation With GMRES[J]. Applied Mathematics and Mechanics, 2010, 31(1): 81-90. doi: 10.3879/j.issn.1000-0887.2010.01.009

基于GMRES算法的弹性结构强耦合小变形流激振动分析

doi: 10.3879/j.issn.1000-0887.2010.01.009
基金项目: 国家自然科学基金(重点)资助项目(50839003);云南省自然科学基金资助项目(2008GA027)
详细信息
    作者简介:

    张立翔(1959- ),男,云南石屏人,教授,博士,博士生导师(联系人:Tel:+86-871-3303561;E-mail:zlxzcc@126.com).

  • 中图分类号: O332

Analysis of Fully Coupled Flow-Induced Vibration of Structure Under Small Deformation With GMRES

  • 摘要: 使用混合广义变分原理,将基于Lagrange表述的小位移变形结构振动问题与基于Euler描述的不可压缩粘性流动问题,统一在功率平衡的框架下建立流固系统的耦合控制方程.用有限元格式做空间离散后,再用广义梯形法将有限元控制方程转化为增量型的线性方程组,该方程组的系数矩阵具有非对称性,其中元素含对流效应和时间因子.将GMRES算法与振动分析的Newmark法和流动分析的Hughes预测多修正法结合,发展成一种基于GMRES-Hughes-Newmark的稳定算法,用于计算具有复杂几何边界的强耦合流激振动问题.以混流式水轮机叶道为数值算例的计算表明,模拟结果与试验实测结果吻合较好.
  • [1] Weaver D S, Ziada S, Au-Yang M K, et al. Flow-induced vibration in power and process plants components- progress and prospects[J].ASME Journal of Pressure Vessel Technology, 2000, 122(3): 339-348. doi: 10.1115/1.556190
    [2] 张立翔,杨柯. 流体结构互动理论及其应用[M]. 北京:科学出版社, 2004.
    [3] Wu X H, Durbin P A. Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage[J]. Journal of Fluid Mechanics, 2001, 446:199-228.
    [4] Wissink J G. DNS of separating, low Reynolds number flow in a turbine cascade with incoming wakes[J].International Journal of Heat and Fluid Flow, 2003,24(4): 626-635. doi: 10.1016/S0142-727X(03)00056-0
    [5] Rodi W. DNS and LES of some engineering flows[J]. Fluid Dynamics Research, 2006,38(2/3):145-173. doi: 10.1016/j.fluiddyn.2004.11.003
    [6] Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30: 539-578. doi: 10.1146/annurev.fluid.30.1.539
    [7] Wissink J G, Rodi W. Direct numerical simulation of flow and heat transfer in a turbine cascade with incoming wakes[J].Journal of Fluid Mechanics, 2006,569: 209-247. doi: 10.1017/S002211200600262X
    [8] Moin P. Advances in large eddy simulation methodology for complex flows[J]. International Journal of Heat and Fluid Flow,2002, 24(5): 710-720.
    [9] Manna M, Benocci C, Simons E. Large eddy simulation of turbulent flows via domain decomposition techniques—part 1: theory[J]. International Journal for Numerical Methods in Fluids, 2005, 48(4): 367-395. doi: 10.1002/fld.902
    [10] Benocci C, Giammanco R, Manna M, et al. Large eddy simulation of turbulent flows via domain decomposition techniques—part 2: applications[J]. International Journal for Numerical Methods in Fluids, 2005, 48(4): 397-422. doi: 10.1002/fld.903
    [11] Kjellgren P, Hyvrinen J. An arbitrary Lagrangian-Eulerian finite element method[J]. Computational Mechanics, 1998, 21(1):81-90. doi: 10.1007/s004660050285
    [12] Sarrate J, Huerta A, Donea J. Arbitrary Lagrangian-Eulerian formulation for fluid-rigid body interaction[J]. Computer Methods in Applied Mechanics and Engineering, 2001,190(24/25): 3171-3188. doi: 10.1016/S0045-7825(00)00387-X
    [13] Souli M, Ouahsine A, Lewin L. ALE formulation for fluid structure interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000,190(5/7): 659-675.
    [14] Peskin C S. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics, 1977, 25(3): 220-252. doi: 10.1016/0021-9991(77)90100-0
    [15] Kim J, Kim D, Choi H. An immersed-boundary finite-volume method for simulations of flow in complex geometries[J]. Journal of Computational Physics, 2001, 171(1): 132-150. doi: 10.1006/jcph.2001.6778
    [16] Iaccarino G, Verzicco R. Immersed boundary technique for turbulent flow simulations[J]. Applied Mechanics Reviews, 2003, 56(30): 331-347. doi: 10.1115/1.1563627
    [17] Shin S, Bae S Y, Kim I C, et al. Computation of flow over a flexible plate using the hybrid Cartesian/immersed boundary method[J].International Journal for Numerical Methods in Fluids, 2007, 55(3):263-282. doi: 10.1002/fld.1459
    [18] Tezduyar T E. Computation of moving boundaries and interfaces and stabilizatation parameters[J]. International of Journal for Numerical Methods in Fluids, 2003, 43(5):555-575. doi: 10.1002/fld.505
    [19] Bayoumi H N, Gadala M S. A complete finite element treatment for the fully coupled implicit ALE formulation[J]. Computational Mechanics, 2004, 33(6): 435-452. doi: 10.1007/s00466-003-0544-y
    [20] Dettmer W, Peric′ D. A computational framework for fluid-structure interaction: finite element formulation and applications[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41/43):5757-5779.
    [21] Tezduyar T E. Finite elements in fluids: stabilized formulations and moving bound aries and interfaces[J]. Computers and Fluids, 2007, 36(2):191-206. doi: 10.1016/j.compfluid.2005.02.011
    [22] Tezduyar T E. Finite elements in fluids: special methods and enhanced solution techniques[J]. Computers and Fluids, 2007, 36(2):207-223. doi: 10.1016/j.compfluid.2005.02.010
    [23] Tezduyar T E, Sathe S. Modelling of fluid-structure interactions with the space-time finite elements: solution techniques[J]. International of Journal for Numerical Methods in Fluids, 2007, 54(6/8):855-900. doi: 10.1002/fld.1430
    [24] Zhang L X, Guo Y, Wang W Q. Large eddy simulation of turbulent flow in a true 3D Francis hydro turbine passage with dynamical fluid-structure interaction[J]. International Journal for Numerical Methods in Fluids, 2007, 54(5): 517-541. doi: 10.1002/fld.1408
    [25] Zhang L X, Wang W Q, Guo Y. Numerical simulation of flow features and energy exchanging physics in near-wall region with fluid-structure interaction[J]. International Journal of Modern Physics B, 2008, 22(6): 651-669. doi: 10.1142/S0217979208038806
    [26] Liew K M, Wang W Q, Zhang L X, et al. A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation[J].International Journal for Numerical Methods in Engineering, 2007, 72(13):1560-1583. doi: 10.1002/nme.2120
    [27] Ishihara1 D, Yoshimura S. A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation[J].International Journal for Numerical Methods in Engineering, 2005, 64(2):167-203. doi: 10.1002/nme.1348
    [28] Wang W Q, He X Q, Zhang L X, et al. Strongly coupled simulation of fluid-structure interaction in a Francis hydroturbine[J]. International Journal for Numerical Methods in Fluids, 2009, 60(5):515-538. doi: 10.1002/fld.1898
    [29] Teixeira P R F, Awruch A M. Numerical simulation of fluid-structure interaction using the finite element method[J]. Computers & Fluids, 2005, 34(2):249-273.
    [30] Heil M. An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(1/2): 1-23. doi: 10.1016/j.cma.2003.09.006
    [31] Saad Y, Schultz M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869. doi: 10.1137/0907058
    [32] Ayachour E H. A fast implementation for GMRES method[J]. Journal of Computational and Applied Mathematics, 2003, 15(2):269-283.
    [33] Zhang L X, Guo Y K, Wang W Q. FEM simulation of turbulent flow in a turbine blade passage with dynamical fluid-structure interaction[J].International Journal for Numerical Methods in Fluids, 2009,61(12):1299-1330. doi: 10.1002/fld.1996
  • 加载中
计量
  • 文章访问数:  1717
  • HTML全文浏览量:  192
  • PDF下载量:  741
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-13
  • 修回日期:  2009-11-09
  • 刊出日期:  2010-01-15

目录

    /

    返回文章
    返回