留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动壁面槽道流动的直接数值模拟

葛铭纬 许春晓 崔桂香

葛铭纬, 许春晓, 崔桂香. 运动壁面槽道流动的直接数值模拟[J]. 应用数学和力学, 2010, 31(1): 91-101. doi: 10.3879/j.issn.1000-0887.2010.01.010
引用本文: 葛铭纬, 许春晓, 崔桂香. 运动壁面槽道流动的直接数值模拟[J]. 应用数学和力学, 2010, 31(1): 91-101. doi: 10.3879/j.issn.1000-0887.2010.01.010
GE Ming-wei, XU Chun-xiao, CUI Gui-xiang. Direct Numerical Simulation of Flow in a Channel With Time-Dependent Wall Geometry[J]. Applied Mathematics and Mechanics, 2010, 31(1): 91-101. doi: 10.3879/j.issn.1000-0887.2010.01.010
Citation: GE Ming-wei, XU Chun-xiao, CUI Gui-xiang. Direct Numerical Simulation of Flow in a Channel With Time-Dependent Wall Geometry[J]. Applied Mathematics and Mechanics, 2010, 31(1): 91-101. doi: 10.3879/j.issn.1000-0887.2010.01.010

运动壁面槽道流动的直接数值模拟

doi: 10.3879/j.issn.1000-0887.2010.01.010
基金项目: 国家自然科学基金资助项目(10772098)
详细信息
    作者简介:

    葛铭纬(1984- ),男,山东人,博士生(E-mail:gmw06@mails.tsinghua.edu.cn);许春晓,教授,博士(联系人.Tel:+86-10-62780576;E-mail:xucx@tsinghua.edu.cn).

  • 中图分类号: O357.5

Direct Numerical Simulation of Flow in a Channel With Time-Dependent Wall Geometry

  • 摘要: 采用谱方法,在曲线坐标系下对不可压缩Newton流体的N-S方程进行求解,采用定义在物理空间中的流动物理量以避免使用协变、逆变形式的控制方程.在计算空间采用Fourier-Chebyshev谱方法进行空间离散,时间推进采用高精度时间分裂法.为了减小时间分裂带来的误差,采用了高精度的压力边界条件.与其他求解协变、逆变形式控制方程的谱方法相比,该方法在保持谱精度的同时减小了计算量.首先通过静止波形壁面和行波壁面槽道湍流的直接数值模拟,对该数值方法进行了验证;其次,作为初步应用,利用该方法研究了槽道湍流中周期振动凹坑所产生的流动结构.
  • [1] Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30:539-578. doi: 10.1146/annurev.fluid.30.1.539
    [2] Mani R, Lagoudas D C, Rediniotis O K. Active skin for turbulent drag reduction[J]. Smart Materials and Structures, 2008, 17(3):035004. doi: 10.1088/0964-1726/17/3/035004
    [3] Gad-el-Hak M. Compliant coatings for drag reduction[J]. Progress in Aerospace Sciences,2002, 38(1):77-99. doi: 10.1016/S0376-0421(01)00020-3
    [4] Orszag S A, Patterson G S. Numerical simulation of three-dimensional homogeneous isotropic turbulence[J]. Physical Review Letters, 1972, 28(2):76-79. doi: 10.1103/PhysRevLett.28.76
    [5] Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics, 1987, 177:133-166. doi: 10.1017/S0022112087000892
    [6] Carlson H A, Berkooz G, Lumley J L. Direct numerical simulation of flow in a channel with complex time-dependent wall geometries: a pseudospectral method[J]. Journal of Computational Physics, 1995, 121(1):155-175. doi: 10.1006/jcph.1995.1186
    [7] Luo H, Bewley T R. On the contravariant form of the Navier-Stokes equations in time-dependent curvilinear coordinate systems[J]. Journal of Computational Physics, 2004, 199(1):355-375. doi: 10.1016/j.jcp.2004.02.012
    [8] Kang S, Choi H. Active wall motions for skin-friction drag reduction[J]. Physics of Fluids, 2000, 12(12):3301-3304. doi: 10.1063/1.1320833
    [9] Shen L, Zhang X, Yue D K P, et al. Turbulence flow over a flexible wall undergoing a streamwise traveling wave motion[J]. Journal of Fluid Mechanics, 2003, 484:197-221. doi: 10.1017/S0022112003004294
    [10] Karniadakis G E, Isreali M, Orszag S A. High-order splitting methods for the incompressible Navier-Stokes equations[J].Journal of Computational Physics, 1991, 97(2):414-443. doi: 10.1016/0021-9991(91)90007-8
    [11] Xu C, Zhang Z, Nieuwstadt F T M, et al.Origin of high kurtosis levels in the viscous sublayer. direct numerical simulation and experiment[J].Physics of Fluids, 1996, 8(7): 1938-1944. doi: 10.1063/1.868973
    [12] Angelis V D, Lombardi P, Banerjee S. Direct numerical simulation of turbulent flow over a wavy wall[J].Physics of Fluids, 1997, 9(8):2429-2442. doi: 10.1063/1.869363
    [13] Dukowicz J K, Dvinsky A S. Approximate factorization as a high order splitting for the implicit incompressible flow equations[J]. Journal of Computational Physics, 1992, 102(2):336-347. doi: 10.1016/0021-9991(92)90376-A
    [14] Gresho P M. On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix—part 1: theory[J]. International Journal for Numerical Methods in Fluids, 1990, 11(5):587-620. doi: 10.1002/fld.1650110509
    [15] Marcus P S. Simulation of the Taylor-Couette flow—part 1:numerical methods and comparison with experiments[J]. Journal of Fluid Mechanics, 1984, 146:45-46. doi: 10.1017/S0022112084001762
    [16] Kleizer L, Schumman U. Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flow[C]Hirschel E H.Proc 3rd GAMM Conf Numerical Methods in Fluid Mechanics.Cologne,1979.
    [17] Hudson J D, Dykhno L, Hanratty T J. Turbulence production in flow over a wavy wall[J].Experiments in Fluids, 1996, 20(4):257-265.
    [18] Cherukat P, Na Y, Hanratty T J, et al. Direct numerical simulation of a fully developed turbulent flow over a wavy wall[J]. Theoretical and Computational Fluid Dynamics, 1998, 11(2):109-134. doi: 10.1007/s001620050083
    [19] Hunt J C F, Wray A A, Moin P. Eddies, stream, and convergence zones in turbulent flows[R]. Center for Turbulence Research, 1988, CTR-S88:193-208.
  • 加载中
计量
  • 文章访问数:  1579
  • HTML全文浏览量:  175
  • PDF下载量:  880
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-13
  • 修回日期:  2009-11-26
  • 刊出日期:  2010-01-15

目录

    /

    返回文章
    返回