留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质材料有限长微通道电渗流热效应

晁侃 吴健康 陈波

晁侃, 吴健康, 陈波. 异质材料有限长微通道电渗流热效应[J]. 应用数学和力学, 2010, 31(1): 102-110. doi: 10.3879/j.issn.1000-0887.2010.01.011
引用本文: 晁侃, 吴健康, 陈波. 异质材料有限长微通道电渗流热效应[J]. 应用数学和力学, 2010, 31(1): 102-110. doi: 10.3879/j.issn.1000-0887.2010.01.011
CHAO Kan, WU Jian-kang, CHEN Bo. Joule Heating Effect of Electroosmosis in a Finite-Length Microchannel Made of Different Materials[J]. Applied Mathematics and Mechanics, 2010, 31(1): 102-110. doi: 10.3879/j.issn.1000-0887.2010.01.011
Citation: CHAO Kan, WU Jian-kang, CHEN Bo. Joule Heating Effect of Electroosmosis in a Finite-Length Microchannel Made of Different Materials[J]. Applied Mathematics and Mechanics, 2010, 31(1): 102-110. doi: 10.3879/j.issn.1000-0887.2010.01.011

异质材料有限长微通道电渗流热效应

doi: 10.3879/j.issn.1000-0887.2010.01.011
基金项目: 国家自然科学基金资助项目(10872076;50805059)
详细信息
    作者简介:

    晁侃(1983- ),男,陕西宝鸡人,博士生(E-mail:chaokan@foxmai.lcom);吴健康(1946- ),男,福建人,教授,博士(联系人.Tel:+86-27-87543338;E-mail:wujkang@mai.lhus.tedu.cn).

  • 中图分类号: O363.2

Joule Heating Effect of Electroosmosis in a Finite-Length Microchannel Made of Different Materials

  • 摘要: 采用数值方法,分析有限长PDMS/玻璃微通道电渗流热效应.数值求解双电层的Poisson-Boltzmann方程,液体流动的Navier-Stokes方程和流-固耦合的热输运方程,分析二维微通道电渗流的温度特性.考虑温度变化对流体特性(介电系数、粘度、热和电传导率)的反馈效应.数值结果表明,在通道进口附近有一段热发展长度,这里的流动速度、温度、压强和电场快速变化,然后趋向到一个稳定状态.在高电场和厚芯片的情况下,热发展长度可以占据相当一部分的微通道.电渗流稳定态温度随外加电场和芯片厚度的增加而升高.由于壁面材料的热特性差异,在稳定态时的PDMS壁面温度比玻璃壁面温度高.研究还发现在微通道的纵向和横向截面有温度变化.壁面温升降低双电层电荷密度.微通道纵向温度变化诱发流体压强梯度和改变微通道电场特性.微通道进流温度不改变热稳定态的温度和热发展长度.
  • [1] Bayraktar Tuba,Pidugu Srikanth B. Characterization of liquid flows in microfluidic systems[J]. Int J Heat and Mass Transfer,2006,49(5/6): 815-824. doi: 10.1016/j.ijheatmasstransfer.2005.11.007
    [2] Stone H A,Stroock A D,Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annu Rev Fluid Mech,2004,36: 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [3] Probstein R F. Physicochemical Hydrodynamics: An Introduction[M]. New York: John Wiley & Sons,1994.
    [4] Jones A E,Grushka E. Nature of temperature gradients in capillary zone electrophoresis[J]. J Chromatogr,1989,466: 219-225. doi: 10.1016/S0021-9673(01)84618-5
    [5] Knox J H. Thermal effects and band spreading in capillary electro-separation[J]. Chromatographia,1988,26(1): 329-337. doi: 10.1007/BF02268176
    [6] Grushka E,McCormick R M,Kirkland J J. Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations[J]. Anal Chem,1989,61(3): 241-246. doi: 10.1021/ac00178a011
    [7] Knox J H,McCormack K A. Temperature effects in capillary electrophoresis—1: internal capillary temperature and effect upon performance[J]. Chromatographia,1994,38(3/4):207-214; 2: theoretical calculations and predictions[J]. Chromatographia,1994,38(3/4): 215-221. doi: 10.1007/BF02290338
    [8] Azad Qazi Zade,Manzari Mehrdad T,Hannani Siamak K. An analytical solution for thermally fully developed combined pressure-electroosmotically driven flow in microchannels[J]. Int J Heat Mass Transfer,2007,50(5/6): 1087-1096. doi: 10.1016/j.ijheatmasstransfer.2006.07.037
    [9] Horiuchi Keisuke,Dutta P. Joule heating effects in electroosmotically driven microchannel flows[J]. Int J Heat and Mass Transfer,2004,47(14/16): 3085-3095. doi: 10.1016/j.ijheatmasstransfer.2004.02.020
    [10] Dutta P,Horiuchi Keisuke. Thermal characteristics of mixed electroosmotic and pressure-driven microflows[J]. Comput Math Appl,2006,52(5): 651-670. doi: 10.1016/j.camwa.2006.10.002
    [11] Tang G Y,Yang C,Chai J C,et al. Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels[J]. Anal Chim Acta,2004,507(1): 27-37. doi: 10.1016/j.aca.2003.09.066
    [12] Tang G Y,Yang C,Chai J C,et al. Joule heating effect on electroosmotic flow and mass species transport in a microcapillary[J]. Int J Heat and Mass Transfer,2004,47(2): 215-227. doi: 10.1016/j.ijheatmasstransfer.2003.07.006
    [13] TANG Gong-yue,YAN De-guang,YANG Chun,et al. Joule heating and its effects on electrokinetic transport of solutes in rectangular microchannels[J]. Sens Actuators A,2007,139(1/2): 221-232. doi: 10.1016/j.sna.2007.06.002
    [14] XUAN Xiang-chun,Sinton David,LI Dong-qing. Thermal end effects on electroosmotic flow in a capillary[J]. Int J Heat and Mass Transfer,2004,47(14/16): 3145-3157.
    [15] Eteshola E,Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels[J]. Sens Actuators B,2001,72(2): 129-133. doi: 10.1016/S0925-4005(00)00640-7
    [16] Brugger J,Beljakovic G,Despont M,et al. Low-cost PDMS seal ring for single-side wet etching of MEMS structures[J]. Sens Actuators A,1998,70(1/2): 191-194. doi: 10.1016/S0924-4247(98)00132-0
    [17] Fu R,Xu B,Li D. Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye[J]. Int J Thermal Sciences,2006,45(9): 841-847. doi: 10.1016/j.ijthermalsci.2005.11.009
    [18] Jeong Ok Chan,Konishi Satoshi. Fabrication and drive test of pneumatic PDMS micro pump[J]. Sens Actuators A,2007,135(2): 849-856. doi: 10.1016/j.sna.2006.09.012
    [19] Weast R C,Astle M J,Beyer W H. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press,1986.
  • 加载中
计量
  • 文章访问数:  1419
  • HTML全文浏览量:  129
  • PDF下载量:  810
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-11
  • 修回日期:  2009-12-02
  • 刊出日期:  2010-01-15

目录

    /

    返回文章
    返回