留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用三角形面积坐标的四边形17节点样条单元

陈娟 李崇君 陈万吉

陈娟, 李崇君, 陈万吉. 采用三角形面积坐标的四边形17节点样条单元[J]. 应用数学和力学, 2010, 31(1): 117-126. doi: 10.3879/j.issn.1000-0887.2010.01.013
引用本文: 陈娟, 李崇君, 陈万吉. 采用三角形面积坐标的四边形17节点样条单元[J]. 应用数学和力学, 2010, 31(1): 117-126. doi: 10.3879/j.issn.1000-0887.2010.01.013
CHEN Juan, LI Chong-jun, CHEN Wan-ji. A 17-Node Quadrilateral Spline Finite Element Using the Triangular Area Coordinates[J]. Applied Mathematics and Mechanics, 2010, 31(1): 117-126. doi: 10.3879/j.issn.1000-0887.2010.01.013
Citation: CHEN Juan, LI Chong-jun, CHEN Wan-ji. A 17-Node Quadrilateral Spline Finite Element Using the Triangular Area Coordinates[J]. Applied Mathematics and Mechanics, 2010, 31(1): 117-126. doi: 10.3879/j.issn.1000-0887.2010.01.013

采用三角形面积坐标的四边形17节点样条单元

doi: 10.3879/j.issn.1000-0887.2010.01.013
基金项目: 国家自然科学基金资助项目(60533060;10672032;10726067)
详细信息
    作者简介:

    陈娟(1982- ),女,甘肃人,博士生(联系人.E-mail:chenjuan@mail.dlu.tedu.cn).

  • 中图分类号: O241;O343

A 17-Node Quadrilateral Spline Finite Element Using the Triangular Area Coordinates

  • 摘要: 利用二元4次样条插值基和三角形面积坐标构造17节点四边形单元.这个新单元具有4次完备阶,通过一些算例测试表明了该单元有较高精度并对网格畸变不敏感.
  • [1] Zienkiewicz O C,Taylor R L. The Finite Element Method[M]. 5th ed. Singapore: Elsevier Pte Itd,2005.
    [2] Lee N S,Bathe K J. Effects of element distortion on the performance of isoparametric elements[J]. Int J Numer Methods Engrg,1993,36(20): 3553-3576. doi: 10.1002/nme.1620362009
    [3] Long Y Q,Li J X,Long Z F,et al.Area coordinates used in quadrilateral element[J]. Commun Numer Methods Engrg,1999,15(8): 533-545. doi: 10.1002/(SICI)1099-0887(199908)15:8<533::AID-CNM265>3.0.CO;2-D
    [4] Cen S,Chen X M,Fu X R. Quadrilateral membrane element family formulated by the quadrilateral area coordinate method[J]. Comput Methods Appl Mech Engrg,2007,196(41/44): 4337-4353. doi: 10.1016/j.cma.2007.05.004
    [5] 李勇东,陈万吉. 精化不协调平面八节点元[J]. 计算力学学报,1997,14(3): 276-285.
    [6] Li C J,Wang R H. A new 8-node quadrilateral spline finite element[J]. J Comput Appl Math,2006,195(1/2): 54-65. doi: 10.1016/j.cam.2005.07.017
    [7] Rathod H T,Kilari S. General complete Lagrange family for the cube in finite element interpolations[J]. Comput Methods Appl Mech Engrg,2000,181(1/3): 295-344. doi: 10.1016/S0045-7825(99)00080-8
    [8] Ho S P,Yeh Y L. The use of 2D enriched elements with bubble functions for finite element  ̄analysis[J]. Computers and Structures,2006,84(29/30): 2081-2091. doi: 10.1016/j.compstruc.2006.04.008
    [9] Wang R H. The structural characterization and interpolation for multivariate splines[J]. Acta Math Sinica,1975,18(2): 91-106.
    [10] Wang R H. Multivariate Spline Functions and Their Applications[M]. Beijing,New York,Dordrecht,Boston,London: Science Press,Kluwer Academic Publishers,2001.
    [11] Farin G. Triangular Bernstein-Bézier patches[J]. Computer Aided Geometric Design,1986,3(2): 83-127. doi: 10.1016/0167-8396(86)90016-6
  • 加载中
计量
  • 文章访问数:  1663
  • HTML全文浏览量:  140
  • PDF下载量:  891
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-20
  • 修回日期:  2009-12-04
  • 刊出日期:  2010-01-15

目录

    /

    返回文章
    返回