A 17-Node Quadrilateral Spline Finite Element Using the Triangular Area Coordinates
-
摘要: 利用二元4次样条插值基和三角形面积坐标构造17节点四边形单元.这个新单元具有4次完备阶,通过一些算例测试表明了该单元有较高精度并对网格畸变不敏感.Abstract: A 17-node quadrilateral element had been developed using the bivariate quartic spline interpolation basis and the triangular area coordinates, which could exactly model the quartic field. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.
-
[1] Zienkiewicz O C,Taylor R L. The Finite Element Method[M]. 5th ed. Singapore: Elsevier Pte Itd,2005. [2] Lee N S,Bathe K J. Effects of element distortion on the performance of isoparametric elements[J]. Int J Numer Methods Engrg,1993,36(20): 3553-3576. doi: 10.1002/nme.1620362009 [3] Long Y Q,Li J X,Long Z F,et al.Area coordinates used in quadrilateral element[J]. Commun Numer Methods Engrg,1999,15(8): 533-545. doi: 10.1002/(SICI)1099-0887(199908)15:8<533::AID-CNM265>3.0.CO;2-D [4] Cen S,Chen X M,Fu X R. Quadrilateral membrane element family formulated by the quadrilateral area coordinate method[J]. Comput Methods Appl Mech Engrg,2007,196(41/44): 4337-4353. doi: 10.1016/j.cma.2007.05.004 [5] 李勇东,陈万吉. 精化不协调平面八节点元[J]. 计算力学学报,1997,14(3): 276-285. [6] Li C J,Wang R H. A new 8-node quadrilateral spline finite element[J]. J Comput Appl Math,2006,195(1/2): 54-65. doi: 10.1016/j.cam.2005.07.017 [7] Rathod H T,Kilari S. General complete Lagrange family for the cube in finite element interpolations[J]. Comput Methods Appl Mech Engrg,2000,181(1/3): 295-344. doi: 10.1016/S0045-7825(99)00080-8 [8] Ho S P,Yeh Y L. The use of 2D enriched elements with bubble functions for finite element  ̄analysis[J]. Computers and Structures,2006,84(29/30): 2081-2091. doi: 10.1016/j.compstruc.2006.04.008 [9] Wang R H. The structural characterization and interpolation for multivariate splines[J]. Acta Math Sinica,1975,18(2): 91-106. [10] Wang R H. Multivariate Spline Functions and Their Applications[M]. Beijing,New York,Dordrecht,Boston,London: Science Press,Kluwer Academic Publishers,2001. [11] Farin G. Triangular Bernstein-Bézier patches[J]. Computer Aided Geometric Design,1986,3(2): 83-127. doi: 10.1016/0167-8396(86)90016-6
计量
- 文章访问数: 1663
- HTML全文浏览量: 140
- PDF下载量: 891
- 被引次数: 0