Singularity Analysis of a Two-Dimensional Elastic Cable With 1: 1 Internal Resonance
-
摘要: 对1∶1内共振悬索系统的二维分岔方程进行了研究.根据奇异性理论得到了3种情况下开折系统的转迁集.转迁集将整个参数空间分成了不同的保持域,得到了各个保持域上的分岔图.Abstract: Two-degree-of-freedom bifurcation equation s for elastic cable with 1: 1 internal resonance were investigated.The transition set of system was obtained by singularity theory for three cases.The whole parametric plane was divided into several different persistent regions by the tran sition set.The bifurcation diagrams in different persistent regions were obtained.
-
[1] Rao G, Iyengar R N. Internal resonance and non-linear response of cable under periodic excitation [J]. Journal of Sound and Vibration,1991, 149(1): 25-41. doi: 10.1016/0022-460X(91)90909-4 [2] Lee C L, Perkins C N. Nonlinear oscillations of suspended cables containing a two-to-one internal resonance [J]. Nonlinear Dynamic, 1992, 3(6): 465-490. [3] Benedettini F, Rega G, Alaggio R. Non-linear oscillation of four-degree-of-freedom model of suspended cable under multiple internal resonance conditions [J]. Journal Sound and Vibration, 1995, 182(5): 775-789. doi: 10.1006/jsvi.1995.0232 [4] Zhang W, Tang Y. Global dynamics of the cable under combined parametrical and external excitations [J]. International Journal of Non-Linear Mechanics, 2002,37(3): 505-526. doi: 10.1016/S0020-7462(01)00026-9 [5] 王连华, 赵跃宇. 悬索在考虑1∶3内共振情况下的动力学行为[J]. 固体力学学报, 2006, 27(3): 230-236. [6] 赵跃宇, 李永鼎, 王连华, 等. 悬索的超谐共振与1∶3内共振分析[J]. 动力学与控制学报, 2007, 5(2): 112-117. [7] 赵跃宇, 李永鼎, 王连华. 悬索的多重内共振研究[J]. 力学季刊, 2008, 29(1): 15-23. [8] Golubistky M, Schaeffer D G. Singularities and Groups in Bifurcation Theory [M]. VolⅠ, Ⅱ. New York: Springer-Verlag, 1985, 1988. [9] Zhao Y Y, Wang L H, Chen D L. Non-linear dynamic analysis of the two-dimensional simplified model of an elastic cable [J]. Journal of Sound and Vibration, 2002, 255(1):43-59. doi: 10.1006/jsvi.2001.4151 [10] Chen Y S, Leung A Y T. Bifurcation and Chaos in Engineering[M]. London: Springer, 1998.
计量
- 文章访问数: 1636
- HTML全文浏览量: 94
- PDF下载量: 1095
- 被引次数: 0