留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

源自人口动力学的半线性p-Laplace的Dirichlet问题解

R·A·玛氏耶弗 G·艾利索伊 S·奥格拉斯

R·A·玛氏耶弗, G·艾利索伊, S·奥格拉斯. 源自人口动力学的半线性p-Laplace的Dirichlet问题解[J]. 应用数学和力学, 2010, 31(2): 227-235. doi: 10.3879/j.issn.1000-0887.2010.02.012
引用本文: R·A·玛氏耶弗, G·艾利索伊, S·奥格拉斯. 源自人口动力学的半线性p-Laplace的Dirichlet问题解[J]. 应用数学和力学, 2010, 31(2): 227-235. doi: 10.3879/j.issn.1000-0887.2010.02.012
R. A. Mashiyev, G. Alisoy, S. Ogras. Solutions to Semilinear p-Laplacian Dirichlet Problem Arising in Population Dynamics[J]. Applied Mathematics and Mechanics, 2010, 31(2): 227-235. doi: 10.3879/j.issn.1000-0887.2010.02.012
Citation: R. A. Mashiyev, G. Alisoy, S. Ogras. Solutions to Semilinear p-Laplacian Dirichlet Problem Arising in Population Dynamics[J]. Applied Mathematics and Mechanics, 2010, 31(2): 227-235. doi: 10.3879/j.issn.1000-0887.2010.02.012

源自人口动力学的半线性p-Laplace的Dirichlet问题解

doi: 10.3879/j.issn.1000-0887.2010.02.012
详细信息
  • 中图分类号: O152.1

Solutions to Semilinear p-Laplacian Dirichlet Problem Arising in Population Dynamics

  • 摘要: 研究源自人口动力学的半线性p-Laplace方程的Dirichlet问题,得到了该问题在零点处的能量泛函是平凡的Morse临界群.因而,确定了该问题非平凡解的存在性及其分岔性.
  • [1] Namba T. Density-dependent dispersal and spatial distribution of a population [J]. J Theoret Biol,1980,86(2): 351-363. doi: 10.1016/0022-5193(80)90011-9
    [2] Carriao P,Miyagaki O. Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].J Math Anal Appl,1999,230(1):157-172. doi: 10.1006/jmaa.1998.6184
    [3] Hahan W. Stability of Monotone[M]. Berlin,New York: Springer-Verlag,1967.
    [4] Alama S. Semilinear elliptic equations with sublinear indefinite nonlinearities [J]. Adv Differ Equations,1999,4(6): 813-842.
    [5] Bartsch T,Wang Z-Q. On the existence of sing changing solutions for semilinear Dirichlet problems [J]. Topology Methods Nonlinear Anal,1997,28: 115-131.
    [6] Dancer E N,Du Y. The generalized Conley index and multiple solutions of semilinear elliptic problems [J]. Abstract Appl Anal,1996,1(1): 103-135. doi: 10.1155/S108533759600005X
    [7] Moroz V. On the Morse critical groups for indefinite sublinear elliptic problems [J]. Nonlinear Anal,2003,52(5): 1441-1453. doi: 10.1016/S0362-546X(02)00174-8
    [8] Perera K. Nontrivial critical groups in p-Laplacian problems via the Yang index [J]. Topol Methods Nonlinear Anal,2003,21(2): 301-309.
    [9] Mawhin J,Willem M. Critical Point Theory and Hamiltonian Systems[M]. Berlin: Springer,1989.
    [10] Chang K C. Infinite Dimensional Morse Theory and Multiple Solution Problems[M]. Boston: Birkhuser,1993.
    [11] Jiu Q,Su J. Existence and multiplicity results for Dirichlet problems with p-Laplacian [J].J Math Anal Appl,2003,281(2):587-601. doi: 10.1016/S0022-247X(03)00165-3
  • 加载中
计量
  • 文章访问数:  1198
  • HTML全文浏览量:  106
  • PDF下载量:  727
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2009-11-05
  • 刊出日期:  2010-02-15

目录

    /

    返回文章
    返回