留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解二阶锥规划问题的VU分解方法

陆媛 庞丽萍 夏尊铨

陆媛, 庞丽萍, 夏尊铨. 求解二阶锥规划问题的VU分解方法[J]. 应用数学和力学, 2010, 31(2): 245-252. doi: 10.3879/j.issn.1000-0887.2010.02.014
引用本文: 陆媛, 庞丽萍, 夏尊铨. 求解二阶锥规划问题的VU分解方法[J]. 应用数学和力学, 2010, 31(2): 245-252. doi: 10.3879/j.issn.1000-0887.2010.02.014
LU Yuan, PANG Li-ping, XIA Zun-quan. VU-Decomposition Method for a Second-Order Cone Programming Problem[J]. Applied Mathematics and Mechanics, 2010, 31(2): 245-252. doi: 10.3879/j.issn.1000-0887.2010.02.014
Citation: LU Yuan, PANG Li-ping, XIA Zun-quan. VU-Decomposition Method for a Second-Order Cone Programming Problem[J]. Applied Mathematics and Mechanics, 2010, 31(2): 245-252. doi: 10.3879/j.issn.1000-0887.2010.02.014

求解二阶锥规划问题的VU分解方法

doi: 10.3879/j.issn.1000-0887.2010.02.014
基金项目: 国家自然科学基金资助项目(10771026)
详细信息
    作者简介:

    陆媛(1981- ),女,沈阳人,博士(E-maill:uyuan626@yahoo.com.cn);庞丽萍(1968- ),女,辽宁大连人,博士,副教授(联系人.E-maill:ppang@dlu.tedu.cn).

  • 中图分类号: O221.2;O224

VU-Decomposition Method for a Second-Order Cone Programming Problem

  • 摘要: 给出解决二阶锥规划(SOCP)问题的VU-分解方法.问题首先被转化为非线性规划,并给出相应的精确罚函数的Clarke次微分结构及VU-空间分解.在某种条件下,可以计算出一个二阶连续可微的轨道,进而得到目标函数f在其上的二阶展开.最后给出一个具有超线性收敛速度的概念型算法.
  • [1] Alizadeh F,Schmieta S.Symmetric cones,potential reduction methods[C] Wolkowicz H,Saigal R,Vandenberghe L.Handbook of Semidefinite Programming. Boston:Kluwer,2000:195-233.
    [2] Benson H Y,Vanderbei R J.Solving problems with semidefinite and related constraints using interior point methods for nonlinear programming[J].Mathematical Programming,2003,95(2):279-302. doi: 10.1007/s10107-002-0350-x
    [3] Fukushima M,Luo Z-Q,Tseng P.Smoothing functions for second-order-cone complementarity problems[J].SIAM Journal on Optimization,2001,12(2):436-460.
    [4] Kanzow C,Ferenczi I,Fukushima M.Semismooth methods for linear and nonlinear second-order cone programs[R]. Technical Report 2006-005.Department of Applied Mathematics and Physics,Kyoto University,2006.
    [5] 刘勇进,张立卫,王银河.线性二阶锥规划的一个光滑化方法及其收敛性[J].数学进展,2007,36(4):491-502.
    [6] Liu Y J,Zhang L W.Convergence of the augmented Lagrangian method for nonlinear optimization problems over second-order cones[J].Journal of Optimization Theory and Applications,2008,139(3):557-575. doi: 10.1007/s10957-008-9390-6
    [7] Bai Y Q,Wang G Q.Primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function[J].Acta Mathematica Sinica,English Series,2007,23(11):2027-2042. doi: 10.1007/s10114-007-0967-z
    [8] Lemaréchal C,Oustry F,Sagastizbal C.The U-Lagrangian of a convex function[J].Transactions of the American Mathematical Society,2000,352(2):711-729. doi: 10.1090/S0002-9947-99-02243-6
    [9] Mifflin R,Sagastizbal C.VU-decomposition derivatives for convex max-functions[C]Tichatschke R,Théra M.Ill-Posed Variational Problems and Regularization Techniques. Lecture Notes in Economics and Mathematical Systems.Berlin Heidelberg:Springer-Verlag,1999:167-186.
    [10] Oustry F.A second-order bundle method to minimize the maximum eigenvalue function[J].Mathematical Programming,Ser A,2000,89(1):1-33. doi: 10.1007/PL00011388
    [11] Mifflin R,Sagastizbal C.On VU-theory for functions with primal-dual gradient structure[J].SIAM Journal on Optimization,2000,11(2):547-571. doi: 10.1137/S1052623499350967
    [12] Mifflin R,Sagastizbal C.Primal-dual gradient structured functions:second-order results; links to epi-derivatives and partly smooth functions[J].SIAM Journal on Optimization,2003,13(4):1174-1197. doi: 10.1137/S1052623402412441
    [13] Mifflin R,Sagastizbal C.Functions with primal-dual gradient structure and U-Hessians[C] Pillo Di G,Giannessi F.Nonlinear Optimization and Related Topics,Applied Optimization.B V:Kluwer Academic Publishers,2000,36:219-233.
    [14] 单锋,庞丽萍,朱丽梅,等.求解一类MPEC问题的一种VU-分解方法[J].应用数学和力学,2008,29(4):483-488.
  • 加载中
计量
  • 文章访问数:  2102
  • HTML全文浏览量:  148
  • PDF下载量:  833
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2009-12-25
  • 刊出日期:  2010-02-15

目录

    /

    返回文章
    返回