[1] |
Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed packed metals[J]. International Journal of Plasticity, 2006, 22(7): 1171-1194. doi: 10.1016/j.ijplas.2005.06.001
|
[2] |
Plunkett B, Cazacu O, Barlat F. Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals[J]. International Journal of Plasticity, 2008, 24(5): 847-866. doi: 10.1016/j.ijplas.2007.07.013
|
[3] |
曾纪杰, 傅衣铭. 正交各向异性圆柱壳的弹塑性屈曲分析[J]. 工程力学, 2006, 23(10): 25-29.
|
[4] |
Abd-Alla A M, Farhan A M. Effect of the non-homogenity on the composite infinite cylinder of orthotropic material[J]. Physics Letters A, 2008, 372(6): 756-760. doi: 10.1016/j.physleta.2007.08.029
|
[5] |
田燕萍, 傅衣铭. 考虑损伤效应的正交各向异性板的弹塑性后屈曲分析[J]. 应用数学和力学, 2008, 29(7): 764-774.
|
[6] |
Jeffrey E B, Ellen M A, Karl G. Finite element simulations of orthotropic hyperelasticity[J]. Finite Elements in Analysis and Design, 2002, 38(10): 983-998. doi: 10.1016/S0168-874X(02)00089-6
|
[7] |
Romashchenko V A, Tarasovskaya S A. Numerical studies on the dynamic behavior of multilayer thick-walled cylinders with helical orthotropy[J]. Strength of Materials, 2004, 36(6): 621-629. doi: 10.1007/s11223-005-0008-z
|
[8] |
Redekop D. Buckling analysis of an orthotropic thin shell of revolution using differential quadrature[J]. International Journal of Pressure Vessels and Piping, 2005, 82(8): 618-624. doi: 10.1016/j.ijpvp.2005.02.003
|
[9] |
Grigorenko Y M, Rozhok L S. Influence of orthotropy parameters on the stress state of hollow cylinders with elliptic cross-section[J]. International Applied Mechanics, 2007, 43(12): 1372-1379. doi: 10.1007/s10778-008-0008-3
|
[10] |
Xu H M, Yao X F, Feng X Q, et al. Fundamental solution of a power-law orthotropic and half-space functionally graded material under line loads[J]. Composites Science and Technology, 2008, 68(1): 27-34. doi: 10.1016/j.compscitech.2007.05.041
|
[11] |
Emery T R, Dulieu-Barton J M, Earl J S, et al. A generalised approach to the calibration of orthotropic materials for thermoelastic stress analysis[J]. Composites Science and Technology, 2008, 68(3/4): 743-752. doi: 10.1016/j.compscitech.2007.09.002
|
[12] |
Capsoni A, Corradi L, Vena P. Limit analysis of orthotropic structures based on Hill’s yield condition[J]. International Journal of Solids and Structures, 2001, 38(22/23): 3945-3963. doi: 10.1016/S0020-7683(00)00241-9
|
[13] |
Valot E, Vannucci P. Some exact solutions for fully orthotropic laminates[J]. Composite Structures, 2005, 69(2): 157-166. doi: 10.1016/j.compstruct.2004.06.007
|
[14] |
Ma G W, Gama B A, Gillespie J W, Jr. Plastic limit analysis of cylindrically orthotropic circular plates[J]. Composite Structures, 2002, 55(4): 455-466. doi: 10.1016/S0263-8223(01)00174-X
|
[15] |
Shipsha A, Berglund L A. Shear coupling effects on stress and strain distributions in wood subjected to transverse compression[J]. Composites Science and Technology, 2007, 67(7/8): 1362-1369. doi: 10.1016/j.compscitech.2006.09.013
|
[16] |
Mackenzie-Helnwein P, Mullner H W, Eberhardsteiner J, et al. Analysis of layered wooden shells using an orthotropic elasto-plastic model for multi-axial loading of clear spruce wood[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21/24): 2661-2685. doi: 10.1016/j.cma.2004.07.051
|
[17] |
Lyons C K. Stress functions for a heterogeneous section of a tree[J]. International Journal of Solids and Structures, 2002, 39(18): 4615-4625. doi: 10.1016/S0020-7683(02)00381-5
|
[18] |
Lyons C K, Guenther R B, Pyles M R. Elastic equations for a cylindrical section of a tree[J]. International Journal of Solids and Structures, 2002, 39(18): 4773-4786. doi: 10.1016/S0020-7683(02)00373-6
|
[19] |
Galicki J, Czech M. Tensile strength of softwood in LR orthotropy plane[J]. Mechanics of Materials, 2005, 37(6): 677-686. doi: 10.1016/j.mechmat.2004.07.001
|
[20] |
徐卫亚, 张贵科. 节理岩体正交各向异性等效强度参数研究[J]. 岩土工程学报, 2007, 29(6): 806-810.
|
[21] |
徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 1990,93-97.
|