留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交各向异性圆柱体在轴压作用下的应力场

钟卫洲 宋顺成 陈刚 黄西成 黄鹏

钟卫洲, 宋顺成, 陈刚, 黄西成, 黄鹏. 正交各向异性圆柱体在轴压作用下的应力场[J]. 应用数学和力学, 2010, 31(3): 285-294. doi: 10.3879/j.issn.1000-0887.2010.03.004
引用本文: 钟卫洲, 宋顺成, 陈刚, 黄西成, 黄鹏. 正交各向异性圆柱体在轴压作用下的应力场[J]. 应用数学和力学, 2010, 31(3): 285-294. doi: 10.3879/j.issn.1000-0887.2010.03.004
ZHONG Wei-zhou, SONG Shun-cheng, CHEN Gang, HUANG Xi-cheng, HUANG Peng. Stress Field of Orthotropic Cylinder Subjected to Axial Compression[J]. Applied Mathematics and Mechanics, 2010, 31(3): 285-294. doi: 10.3879/j.issn.1000-0887.2010.03.004
Citation: ZHONG Wei-zhou, SONG Shun-cheng, CHEN Gang, HUANG Xi-cheng, HUANG Peng. Stress Field of Orthotropic Cylinder Subjected to Axial Compression[J]. Applied Mathematics and Mechanics, 2010, 31(3): 285-294. doi: 10.3879/j.issn.1000-0887.2010.03.004

正交各向异性圆柱体在轴压作用下的应力场

doi: 10.3879/j.issn.1000-0887.2010.03.004
基金项目: 国家自然科学基金资助项目(50874095);国防973项目专题基金资助项目
详细信息
    作者简介:

    钟卫洲(1978- ),男,四川仁寿人,博士生(联系人.E-mail:wz_zhong@sina.com).

  • 中图分类号: O344.3

Stress Field of Orthotropic Cylinder Subjected to Axial Compression

  • 摘要: 基于材料体积不可压假设,对轴向压缩作用下圆柱试件在加载面内的环向和径向应力分布进行理论分析,计算结果表明:当试件材料本构为正交各向异性时,环向和径向应力分布为半径的幂函数形式;试件材料为横观各向同性时,环向和径向应力为半径的二次函数.在圆柱试件轴线上环向和径向应力相等,且均具有最大值;试件圆周边界上径向应力为0,环向应力具有极小值.通过最大拉伸应变破坏理论对试件环向应变进行分析,获得了产生环向拉伸破坏时的临界轴向载荷;并采用Hill-蔡强度理论对试件圆周边界上计算得到的应力参量进行描述,得到了轴压作用下圆柱试件的Hill-蔡强度理论表达式,其不仅取决于轴向应力和试件材料的基本力学性能,还与试件轴向变形的应变率及应变率随时间的变化率相关.
  • [1] Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed packed metals[J]. International Journal of Plasticity, 2006, 22(7): 1171-1194. doi: 10.1016/j.ijplas.2005.06.001
    [2] Plunkett B, Cazacu O, Barlat F. Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals[J]. International Journal of Plasticity, 2008, 24(5): 847-866. doi: 10.1016/j.ijplas.2007.07.013
    [3] 曾纪杰, 傅衣铭. 正交各向异性圆柱壳的弹塑性屈曲分析[J]. 工程力学, 2006, 23(10): 25-29.
    [4] Abd-Alla A M, Farhan A M. Effect of the non-homogenity on the composite infinite cylinder of orthotropic material[J]. Physics Letters A, 2008, 372(6): 756-760. doi: 10.1016/j.physleta.2007.08.029
    [5] 田燕萍, 傅衣铭. 考虑损伤效应的正交各向异性板的弹塑性后屈曲分析[J]. 应用数学和力学, 2008, 29(7): 764-774.
    [6] Jeffrey E B, Ellen M A, Karl G. Finite element simulations of orthotropic hyperelasticity[J]. Finite Elements in Analysis and Design, 2002, 38(10): 983-998. doi: 10.1016/S0168-874X(02)00089-6
    [7] Romashchenko V A, Tarasovskaya S A. Numerical studies on the dynamic behavior of multilayer thick-walled cylinders with helical orthotropy[J]. Strength of Materials, 2004, 36(6): 621-629. doi: 10.1007/s11223-005-0008-z
    [8] Redekop D. Buckling analysis of an orthotropic thin shell of revolution using differential quadrature[J]. International Journal of Pressure Vessels and Piping, 2005, 82(8): 618-624. doi: 10.1016/j.ijpvp.2005.02.003
    [9] Grigorenko Y M, Rozhok L S. Influence of orthotropy parameters on the stress state of hollow cylinders with elliptic cross-section[J]. International Applied Mechanics, 2007, 43(12): 1372-1379. doi: 10.1007/s10778-008-0008-3
    [10] Xu H M, Yao X F, Feng X Q, et al. Fundamental solution of a power-law orthotropic and half-space functionally graded material under line loads[J]. Composites Science and Technology, 2008, 68(1): 27-34. doi: 10.1016/j.compscitech.2007.05.041
    [11] Emery T R, Dulieu-Barton J M, Earl J S, et al. A generalised approach to the calibration of orthotropic materials for thermoelastic stress analysis[J]. Composites Science and Technology, 2008, 68(3/4): 743-752. doi: 10.1016/j.compscitech.2007.09.002
    [12] Capsoni A, Corradi L, Vena P. Limit analysis of orthotropic structures based on Hill’s yield condition[J]. International Journal of Solids and Structures, 2001, 38(22/23): 3945-3963. doi: 10.1016/S0020-7683(00)00241-9
    [13] Valot E, Vannucci P. Some exact solutions for fully orthotropic laminates[J]. Composite Structures, 2005, 69(2): 157-166. doi: 10.1016/j.compstruct.2004.06.007
    [14] Ma G W, Gama B A, Gillespie J W, Jr. Plastic limit analysis of cylindrically orthotropic circular plates[J]. Composite Structures, 2002, 55(4): 455-466. doi: 10.1016/S0263-8223(01)00174-X
    [15] Shipsha A, Berglund L A. Shear coupling effects on stress and strain distributions in wood subjected to transverse compression[J]. Composites Science and Technology, 2007, 67(7/8): 1362-1369. doi: 10.1016/j.compscitech.2006.09.013
    [16] Mackenzie-Helnwein P, Mullner H W, Eberhardsteiner J, et al. Analysis of layered wooden shells using an orthotropic elasto-plastic model for multi-axial loading of clear spruce wood[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21/24): 2661-2685. doi: 10.1016/j.cma.2004.07.051
    [17] Lyons C K. Stress functions for a heterogeneous section of a tree[J]. International Journal of Solids and Structures, 2002, 39(18): 4615-4625. doi: 10.1016/S0020-7683(02)00381-5
    [18] Lyons C K, Guenther R B, Pyles M R. Elastic equations for a cylindrical section of a tree[J]. International Journal of Solids and Structures, 2002, 39(18): 4773-4786. doi: 10.1016/S0020-7683(02)00373-6
    [19] Galicki J, Czech M. Tensile strength of softwood in LR orthotropy plane[J]. Mechanics of Materials, 2005, 37(6): 677-686. doi: 10.1016/j.mechmat.2004.07.001
    [20] 徐卫亚, 张贵科. 节理岩体正交各向异性等效强度参数研究[J]. 岩土工程学报, 2007, 29(6): 806-810.
    [21] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 1990,93-97.
  • 加载中
计量
  • 文章访问数:  1848
  • HTML全文浏览量:  185
  • PDF下载量:  991
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-01
  • 修回日期:  2010-01-11
  • 刊出日期:  2010-03-15

目录

    /

    返回文章
    返回