留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同流条件下随温度变化的流体黏性和热泳微粒沉积对自由传热传质作用的Lie群分析

R·坎达沙密 穆海明

R·坎达沙密, 穆海明. 不同流条件下随温度变化的流体黏性和热泳微粒沉积对自由传热传质作用的Lie群分析[J]. 应用数学和力学, 2010, 31(3): 295-305. doi: 10.3879/j.issn.1000-0887.2010.03.005
引用本文: R·坎达沙密, 穆海明. 不同流条件下随温度变化的流体黏性和热泳微粒沉积对自由传热传质作用的Lie群分析[J]. 应用数学和力学, 2010, 31(3): 295-305. doi: 10.3879/j.issn.1000-0887.2010.03.005
Ramasamy Kandasamy, Muhaimin. Lie Group Analysis for the Effect of Temperature-Dependent Fluid Viscosity and Thermophoresis Particle Deposition on Free Convective Heat and Mass Transfer in the Presence of Variable Stream Conditions[J]. Applied Mathematics and Mechanics, 2010, 31(3): 295-305. doi: 10.3879/j.issn.1000-0887.2010.03.005
Citation: Ramasamy Kandasamy, Muhaimin. Lie Group Analysis for the Effect of Temperature-Dependent Fluid Viscosity and Thermophoresis Particle Deposition on Free Convective Heat and Mass Transfer in the Presence of Variable Stream Conditions[J]. Applied Mathematics and Mechanics, 2010, 31(3): 295-305. doi: 10.3879/j.issn.1000-0887.2010.03.005

不同流条件下随温度变化的流体黏性和热泳微粒沉积对自由传热传质作用的Lie群分析

doi: 10.3879/j.issn.1000-0887.2010.03.005
详细信息
  • 中图分类号: O357.1

Lie Group Analysis for the Effect of Temperature-Dependent Fluid Viscosity and Thermophoresis Particle Deposition on Free Convective Heat and Mass Transfer in the Presence of Variable Stream Conditions

  • 摘要: 研究二维稳定不可压缩流体在竖向延伸平面上的流动.流体黏性假设为与温度相关的线性函数.对控制方程进行伸缩群变换,由于变换参数之间的关系让方程解保持不变.在找到3个绝对不变量后,推导对应动量方程的一个三阶一般微分方程和两个对应能量方程和扩散方程的二阶一般微分方程.求出具有边界条件方程的数值解,发现随着平面延伸距离增加,随温度变化的流体黏性降低让流速变慢.在平面的某个特定点处,随着黏性减少流速变慢但温度增加.热泳微粒沉积在浓度边界层起着关键作用.最后对计算结果进行讨论并给出图例.
  • [1] Oberlack M. Similarity in non-rotating and rotating turbulent pipe flows[J]. J Fluid Mechanics, 1999, 379(1): 1-22. doi: 10.1017/S0022112098001542
    [2] Bluman G W, Kumei S. Symmetries and Differential Equations[M]. New York: Springer-Verlag,1989.
    [3] Pakdemirli M, Yurusoy M. Similarity transformations for partial differential equations[J]. SIAM Rev, 1998, 40(1): 96-101. doi: 10.1137/S003614459631001X
    [4] Crane L J. Flow past a stretching plate[J]. Z Angew Math Phys, 1970, 21(4): 645-647. doi: 10.1007/BF01587695
    [5] Sakiadis B C. Boundary-layer behavior on continuous solid surface─Ⅰ:the boundary-layer equations for two-dimensional and asymmetric flow[J]. AIChE J, 1961, 7(2): 26-28. doi: 10.1002/aic.690070108
    [6] Sakiadis B C. Boundary-layer behavior on continuous solid surface─Ⅱ:the boundary-layer on a continuous flat surface[J]. AIChE J, 1961,7(2): 221-225. doi: 10.1002/aic.690070211
    [7] Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction and blowing[J]. Can J Chem Eng, 1977, 55(6): 744-746. doi: 10.1002/cjce.5450550619
    [8] Abel M S, Khan S K, Prasad K V. Study of visco-elastic fluid flow and heat transfer over a stretching sheet with variable viscosity[J]. Int J Non-Linear Mech, 2002,37(1): 81-88.
    [9] Epstein M, Hauser G M, Henry R E. Thermophoretic deposition of particles in natural convection flow from vertical plate[J]. ASME J Heat Trans, 1985, 107(2): 272-276. doi: 10.1115/1.3247410
    [10] Goren S L. Thermophoresis of aerosol particles in laminar boundary layer on a flat plate[J]. J Colloid Interface Sci, 1977, 61(1): 77-85. doi: 10.1016/0021-9797(77)90416-7
    [11] Garg V K, Jayaraj S. Thermophoresis of aerosol particles in laminar flow over inclined plates[J]. Int J Heat Mass Transf, 1988,31(4): 875-890. doi: 10.1016/0017-9310(88)90144-5
    [12] Jayaraj S, Dinesh K K, Pillai K L. Thermophoresis in natural convection with variable properties[J]. Int J Heat Mass Transf, 1999, 34(3): 469-475. doi: 10.1007/s002310050284
    [13] Selim A, Hossain M A, Rees D A S. The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis[J]. International Journal of Thermal Science, 2003, 42(6): 973-981. doi: 10.1016/S1290-0729(03)00075-9
    [14] Wang C C. Combined effects of inertia and thermophoresis on particle deposition onto a wafer with wavy surface[J]. Int J Heat Mass Transf, 2006, 49(8): 1395-1402. doi: 10.1016/j.ijheatmasstransfer.2005.09.036
    [15] Wang C C, Chen C K. Thermophoresis deposition of particles from a boundary layer flow onto a continuously moving wavy surface[J]. Acta Mech, 2006, 181(1): 139-151. doi: 10.1007/s00707-005-0297-0
    [16] Chamka A, Pop I. Effect of thermophoresis particle deposition in free convection boundary layer from a vertical flat plate embedded in a porous medium[J]. Int Comm Heat Mass Trans, 2004, 31(3): 421-430. doi: 10.1016/j.icheatmasstransfer.2004.02.012
    [17] Chamka A, Jaradat M, Pop I. Thermophoresis free convection from a vertical cylinder embedded in a porous medium[J]. Int J Appl Mech Eng, 2004, 9(4): 471-481.
    [18] Nield D A, Bejan A. Convection in Porous Media[M]. 2nd ed. New York: Springer, 1999.
    [19] Ingham D, Pop I. Transport Phenomena in Porous Media Ⅰ[M].Pergamon: Oxford,1998.
    [20] Ingham D, Pop I. Transport Phenomena in Porous Media Ⅱ[M].Pergamon: Oxford,2002.
    [21] CHEN Chieh-li, CHAN Kun-chieh. Combined effects of thermophoresis and electrophoresis on particle deposition onto a wavy surface disk[J]. Int J Heat Mass Transfer, 2008, 51(7): 2657-2664. doi: 10.1016/j.ijheatmasstransfer.2007.09.035
    [22] WANG Chi-chang. Combined effects of inertia and thermophoresis on particle deposition onto a wafer with wavy surface[J]. Int J Heat Mass Transfer, 2008, 51(7): 1395-1402.
    [23] Gary J, Kassoy D R, Tadjeran H, et al. The effects of significant viscosity variation on convective heat transport in water saturated porous medium[J]. J Fluid Mech, 1982, 117(2): 233-241. doi: 10.1017/S0022112082001608
    [24] Mehta K N. Sood S. Transient free convection flow with temperature-dependent viscosity in a fluid saturated porous medium[J]. Int J Engg Sci, 1992, 30(5): 1083-1087. doi: 10.1016/0020-7225(92)90032-C
    [25] Mukhopadhyay S, Layek G C, Samad S A. Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity[J]. Int J Heat Mass Transfer, 2005, 48 (7): 4460-4466. doi: 10.1016/j.ijheatmasstransfer.2005.05.027
    [26] Mukhopadhyay S, Layek G C. Effects of thermal radiation and variable fluid viscosity on free convective flow and heat transfer past a porous stretching surface[J]. Int J Heat Mass Transfer, 2008, 51(6): 2167-2178. doi: 10.1016/j.ijheatmasstransfer.2007.11.038
    [27] Brewster M Q. Thermal Radiative Transfer Properties[M]. New York: John Wiley and Sons, 1992.
    [28] Batchelor G K. An Introduction to Fluid Dynamics[M]. London: Cambridge University Press, 1987.
    [29] Ling J X, Dybbs A. Forced convection over a flat plate submersed in a porous medium: variable viscosity case[R]. Paper 87-WA/HT-23, American Society of Mechanical Engineers, N Y, 1987.
    [30] Gill S. A process for the step-by-step integration of differential equations in an automatic digital computing machine[J]. Proceedings of the Cambridge Phil Society, 1951,47(1): 96-108. doi: 10.1017/S0305004100026414
    [31] Hossain M A, Khanafer K, Vafai K. The effect of radiation on free convection flow of fluid with variable viscosity from a porous vertical plate[J]. Int J Thermal Sci, 2001, 40(2): 115-124. doi: 10.1016/S1290-0729(00)01200-X
  • 加载中
计量
  • 文章访问数:  1336
  • HTML全文浏览量:  123
  • PDF下载量:  831
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2009-11-23
  • 刊出日期:  2010-03-15

目录

    /

    返回文章
    返回