留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夹芯型雷达吸波结构的多目标优化

陈明继 裴永茂 方岱宁

陈明继, 裴永茂, 方岱宁. 夹芯型雷达吸波结构的多目标优化[J]. 应用数学和力学, 2010, 31(3): 315-323. doi: 10.3879/j.issn.1000-0887.2010.03.007
引用本文: 陈明继, 裴永茂, 方岱宁. 夹芯型雷达吸波结构的多目标优化[J]. 应用数学和力学, 2010, 31(3): 315-323. doi: 10.3879/j.issn.1000-0887.2010.03.007
CHEN Ming-ji, PEI Yong-mao, FANG Dai-ning. Multi-Objective Optimization Design of Radar Absorbing Sandwich Structure[J]. Applied Mathematics and Mechanics, 2010, 31(3): 315-323. doi: 10.3879/j.issn.1000-0887.2010.03.007
Citation: CHEN Ming-ji, PEI Yong-mao, FANG Dai-ning. Multi-Objective Optimization Design of Radar Absorbing Sandwich Structure[J]. Applied Mathematics and Mechanics, 2010, 31(3): 315-323. doi: 10.3879/j.issn.1000-0887.2010.03.007

夹芯型雷达吸波结构的多目标优化

doi: 10.3879/j.issn.1000-0887.2010.03.007
基金项目: 国家自然科学基金资助项目(90816025;10632060;10640150395);国家重点基础研究发展计划资助项目(2006CB601202);爆炸科学与技术国家重点实验室基金资助项目(KFJJ08-15)
详细信息
    作者简介:

    陈明继(1981- ),男,福州人,博士生(Tel:+86-10-62772933;E-mail:m_jchen04@mails.tsinghua.edu.cn);方岱宁(联系人.E-mail:fangdn@mail.tsinghua.edu.cn).

  • 中图分类号: TB34

Multi-Objective Optimization Design of Radar Absorbing Sandwich Structure

  • 摘要: 通过引入一个无量纲参数,将重量和雷达吸波性能两个优化目标结合于同一个目标函数中,提出了针对含有多孔材料芯层的夹芯型雷达吸波结构(RASS)的一种多目标优化设计方法.优化模型为承受均布载荷的悬臂夹芯板,考虑4种不同形式的芯层.由传输矩阵法和周期矩量法计算出镜面反射率的平均值,作为表征吸波性能的指标;而面板屈服、芯层剪切破坏和面板起皱则作为优化设计中的力学性能约束.优化结果表明,以填充超轻质海绵体的复合材料二维点阵为芯层的夹芯结构,比含有多孔泡沫或六角蜂窝芯层的夹芯结构更适合作为轻质夹芯型雷达吸波结构.Kagome二维点阵则表现出优于正方二维点阵的吸波性能.
  • [1] Vinoy K J, Jha R M. Radar Absorbing Materials: From Theory to Design and Characterization[M]. Boston: Kluwer Academic Publishers, 1996.
    [2] Oh J H, Oh K S, Kim C G, et al. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges[J]. Composites Part B: Engineering, 2004, 35(1):49-56. doi: 10.1016/j.compositesb.2003.08.011
    [3] Chin W S, Lee D G. Development of the composite RAS (radar absorbing structure) for the X-band frequency range[J]. Composite Structures, 2007, 77(4):457-465. doi: 10.1016/j.compstruct.2005.07.021
    [4] Lee S E, Kang J H, Kim C G. Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites[J]. Composite Structures, 2006, 76(4):397-405. doi: 10.1016/j.compstruct.2005.11.036
    [5] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. Cambridge, UK: Cambridge University Press, 1997.
    [6] Yang J, Shen Z M, Hao Z B. Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core[J]. Carbon, 2004, 42(8/9):1882-1885. doi: 10.1016/j.carbon.2004.03.017
    [7] Park K Y, Lee S E, Kim C G, et al. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures[J]. Composite Science Technology, 2006, 66(3/4):576-584. doi: 10.1016/j.compscitech.2005.05.034
    [8] Gao Z P, Luo Q. Reflection characteristics of impregnated absorbent honeycomb under normal incidence of plane wave[J]. Journal of UEST of China, 2003, 32(4):389-394.
    [9] Fan H L, Yang W, Chao Z M. Microwave absorbing composite lattice grids[J]. Composite Science Technology, 2007, 67(15/16):3472-3479. doi: 10.1016/j.compscitech.2007.03.002
    [10] Chen M, Pei Y, Fang D. Computational method for radar absorbing composite lattice grids[J]. Computational Materials Science, 2009, 46(3):591-594. doi: 10.1016/j.commatsci.2008.12.011
    [11] Chambers B, Tennant A. Design of wide-band Jaumann radar absorbers with optimum oblique-incidence performance[J]. Electronics Letters, 1994, 30(18):1530-1532.
    [12] Goudos S K, Sahalos J N. Microwave absorber optimal design using multi-objective particle swarm optimization[J]. Microwave and Optical Technology Letters, 2006, 48(8):1553-1558. doi: 10.1002/mop.21727
    [13] Yuan H, Xiao G, Cao M S. A novel method of computation and optimization for multi-layered radar absorbing coatings using open source software[J]. Materials and Design, 2006, 27(1):45-52. doi: 10.1016/j.matdes.2004.09.009
    [14] Lu T J, Hutchinson J W, Evans A G. Optimal design of a flexural actuator[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(9):2071-2093. doi: 10.1016/S0022-5096(01)00024-2
    [15] Han L H, Lu T J, Evans A G. Optimal design of a novel high authority SMA actuator[J]. Mechanics of Advanced Materials and Structures, 2005, 12(3):217-227. doi: 10.1080/15376490590928589
    [16] Lu T J, Valdevit L, Evans A G. Active cooling by metallic sandwich structures with periodic cores[J]. Progress in Materials Science, 2005, 50(7):789-815. doi: 10.1016/j.pmatsci.2005.03.001
    [17] Liu T, Deng Z C, Lu T J. Bi-functional optimization of actively cooled, pressurized hollow sandwich cylinders with prismatic cores[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12):2565-2602. doi: 10.1016/j.jmps.2007.04.007
    [18] Wang X L, Lu T J. Optimized acoustic properties of cellular solids[J]. Journal of the Acoustical Society of America, 1999, 106(2):756-765. doi: 10.1121/1.427094
    [19] Zhang Y H, Qiu X M, Fang D N. Mechanical properties of two novel planar lattice structures[J]. International Journal of Solids and Structures, 2008, 45(13):3751-3768. doi: 10.1016/j.ijsolstr.2007.10.005
    [20] Ashby M F, Evans A G, Fleck N A, et al. Metal Foams: A Design Guide[M]. Boston: Butterworth Heinemann, 2000.
    [21] Zhang Y H, Fan H L, Fang D N. Constitutive relations and failure criterion of planar lattice composites[J]. Composites Science and Technology, 2008, 68(15/16):3299-3304. doi: 10.1016/j.compscitech.2008.08.017
    [22] Johansson M, Holloway C L, Kuester E F. Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers[J]. IEEE Transaction on Antennas and Propagation, 2005, 53(2): 728-736. doi: 10.1109/TAP.2004.841320
    [23] Zhang H T, Zhang J S, Zhang H Y. Computation of radar absorbing silicon carbide foams and their silica matrix composites[J]. Computational Materials Science, 2007, 38(4):857-864. doi: 10.1016/j.commatsci.2006.05.024
    [24] Kong J A. Electromagnetic Wave Theory[M]. New York: Wiley, 1990.
    [25] 陈祥宝. 聚合物基复合材料手册[M]. 北京: 化学工业出版社, 2004.
  • 加载中
计量
  • 文章访问数:  1814
  • HTML全文浏览量:  125
  • PDF下载量:  983
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-26
  • 修回日期:  2010-01-27
  • 刊出日期:  2010-03-15

目录

    /

    返回文章
    返回